摘要:
A fuel element has a ratio of area of fissionable nuclear fuel in a cross-section of the tubular fuel element perpendicular to the longitudinal axis to total area of the interior volume in the cross-section of the tubular fuel element that varies with position along the longitudinal axis. The ratio can vary with position along the longitudinal axis between a minimum of 0.30 and a maximum of 1.0. Increasing the ratio above and below the peak burn-up location associated with conventional systems reduces the peak burn-up and flattens and shifts the burn-up distribution, which is preferably Gaussian. The longitudinal variation can be implemented in fuel assemblies using fuel bodies, such as pellets, rods or annuli, or fuel in the form of metal sponge and meaningfully increases efficiency of fuel utilization.
摘要:
A fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same are provided, in which the fabrication method includes adding boron compound and manganese compound to one or more type of nuclear fuel powders selected from the group consisting of uranium dioxide (UO2), plutonium dioxide (PuO2) and thorium dioxide (ThO2) and mixing the same (step 1), compacting the mixed powder of step 1 into compacts (step 2), and sintering the compacts of step 2 under hydrogen atmosphere (step 3). According to the fabrication method, sintering can be performed under hydrogen atmosphere at a temperature lower than the hydrogen atmosphere sintering that is conventionally applied in the nuclear fuel sintered pellet mass production, by adding sintering additives such as manganese oxide or the like.
摘要:
The present invention relates to a multi-core fuel rod for research reactor and, more particularly, to a multi-core fuel rod for research reactor in which monolithic fuel cores made of uranium-molybdenum alloy are disposed in an aluminum matrix in a multi-core form. The multi-core fuel rod in accordance with the present invention provides a minimized contact surface area between nuclear fuel and aluminum, and reduces the formation of pores and swelling by restraining formation of reaction layer to avoid excessive reaction between the fuel and aluminum. Therefore, improved stability of nuclear fuel can be obtained by minimizing temperature rise as well as achieving high density and thermal conductivity of the fuel.
摘要:
Nuclear propulsion fission reactor structure has an active core region including fuel element structures, a reflector with rotatable neutron absorber structures (such as drum absorbers), and a core former conformal mating the outer surface of the fuel element structures to the reflector. Fuel element structures are arranged abutting nearest neighbor fuel element structures in a tri-pitch design. Cladding bodies defining coolant channels are inserted into and joined to lower and upper core plates to from a continuous structure that is a first portion of the containment structure. The body of the fuel element has a structure with a shape corresponding to a mathematically-based periodic solid, such as a triply periodic minimal surface (TPMS) in a gyroid structure. The nuclear propulsion fission reactor structure can be incorporated into a nuclear thermal propulsion engine for propulsion applications, such as space propulsion.
摘要:
A nanofuel engine including an inventive nanofuel internal engine, whereby nuclear energy is released in the working fluid and directly converted into useful work, with the qualities of an economical advanced small modular gaseous pulsed thermal reactor. Scientific feasibility is established by studying the behavior of nuclear fuels in configurations designed to support a fission chain reaction. Nanofuel is defined as nuclear fuel suitable for use in an internal engine, comprised of six essential ingredients, and can be created from clean fuel or from the transuranic elements found in light-water reactor spent nuclear fuel in a proliferation resistant manner. Three essential ingredients ensure the nanofuel is inherently stable, due to a negative temperature coefficient of reactivity. Reciprocating and Wankel (rotary) internal engine configurations, which operate in an Otto cycle, are adapted to support a fission chain reaction. Dynamic engine cores experience a decrease in criticality as the engine piston or rotor moves away from the top dead center position. In this inherent safety feature, the increase in engine core volume decreases the nanofuel density and increases the neutron leakage. Technological feasibility is demonstrated by examining potential engineering limitations. The nanofuel internal engine can be operated in two modes: spark-ignition with an external neutron source such as a fusion neutron generator; and compression-ignition with an internal neutron source. The structural integrity can be maintained using standard internal combustion engine design and operation practices. The fuel system can be operated in a closed thermodynamic cycle, which allows for complete fuel utilization, continuous refueling, and easy fission product extraction. Nanofuel engine power plant configurations offer favorable economic, safety, and waste management attributes when compared to existing power generation technology. The initial (first-of-a-kind) overnight capital cost is approximately $400 per kilowatt-electric. Obvious safety features include an underground installation, autonomous operation, and an ultra-low nuclear material inventory.
摘要:
A method of mass producing nuclear fuel elements may include: forming a graphite base portion of the fuel elements; repeatedly performing a sequence of operations comprising depositing a uniform graphite layer over a previous layer, depositing a layer of particles on the uniform graphite layer within a fuel zone diameter, so that the particles are spaced apart in a predefined pattern, and applying a binder using additive manufacturing methods to bind each layer with successively increasing and then decreasing diameters to form a central portion of fuel elements including a fuel-containing fuel zone; and repeatedly performing a sequence of operations comprising forming a uniform graphite layer on a previous layer and applying a binder using additive manufacturing methods to bind each layer with successively decreasing diameters to form a cap portion of fuel elements. The particles may include one or more of a nuclear fuel material, burnable poison material, or breeder material. The fuel particles may be tri-structural-isotropic (TRISO) particles that do not have an overcoat.
摘要:
An active zone includes a homogeneous uranium-plutonium nitride fuel, the mass fraction of which is a minimum 0.305, and consists of central, intermediate and peripheral parts which form fuel assemblies comprising fuel elements with geometrically identical shells but differing heights. The radial distribution of the fuel across the volume of the active zone has a stepped shape. The radius of the central part is from 0.4 to 0.5 of the effective active zone radius, while the height of the fuel column in the fuel elements in the central part is from 0.5 to 0.8 of the height of the fuel column in the peripheral part. The heights of the fuel columns forming a stepped intermediate part for diameters ranging from 0.5 to 0.85 of the effective active zone diameter are within the range from 0.55 to 0.9 of the height of the fuel column in the peripheral part.
摘要:
A core of a light water reactor has a plurality of fuel assemblies. The fuel assemblies include a plurality of fuel rods in which a lower end is supported by a lower tie-plate and an upper end is supported by an upper tie-plate. The fuel rods form plenums above a nuclear fuel material zone and have a neutron absorbing material filling zone under the nuclear fuel material zone. Neutron absorbing members attached to the upper tie-plate are disposed between mutual plenums of the neighboring fuel rods above the nuclear fuel material zone. The neutron absorbing members have a length of 500 mm and are positioned at a distance of 300 mm from the nuclear fuel material zone. Even if the overall core is assumed to become a state of 100% void, no positive reactivity is inserted to the core.
摘要:
Methods, processes, and systems of transportable nuclear batteries are provided. In one embodiment, the battery may comprise a sealed reactor shell, a reactor core, and a generator. In further embodiments, the transportable nuclear battery may comprise a nuclear fuel in the reactor core wherein the fuel comprises plutonium, carbon, hydrogen, zirconium and, thorium. In some embodiments, the fuel may comprise hydrogen-containing glass microspheres, wherein the glass microspheres, may be coated with a burnable poison, and other coating materials that may aid in keeping the hydrogen within the microsphere glass at relatively high temperature. The disclosed methods, processes and systems may aid in providing energy to remote areas.