Abstract:
Provided is an optical system which can adjust, including increase, a spin polarization degree of an electron beam. Disclosed is a charged particle device having a charged particle source which generates charged particles, a sample table on which a sample is placed, and a transport optical system which is disposed between the charged particle source and the sample table and transports the charged particles as charged particle flux toward the sample table. In this device, the transport optical system includes a magnetic field generating section which generates a magnetic field having a vertical component to a course of the charged particle flux, an electric field generating section which generates an electric field having a vertical component to the course of the charged particle flux, and a shielding section which shields at least a part of the charged particle flux passed through the magnetic field generating section and the electric field generating section. Moreover, the vertical component of the magnetic field has a magnetic field gradient, and the vertical component of the electric field gives an electrostatic force in a direction opposite to a Lorentz force received by the charged particle flux.
Abstract:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
Abstract:
A spin device includes: a first condenser lens which focuses a spin polarized electron beam discharged from an electron gun or reflected on a sample; a spin rotator which includes a multipole having a point to which the electron beam is focused by the first condenser lens at a lens center or in the vicinity of the lens center and being capable of generating an electric field and a magnetic field; a Wien condition generating means which applies a voltage and a current which satisfy the Wien condition for rotating spin of the electron beam by a designated angle and making the electron beam advance straightly to the multipole which constitutes the spin rotator; and a second condenser lens which focuses the electron beam whose spin is rotated by the spin rotator.
Abstract:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
Abstract:
A spin device includes: a first condenser lens which focuses a spin polarized electron beam discharged from an electron gun or reflected on a sample; a spin rotator which includes a multipole having a point to which the electron beam is focused by the first condenser lens at a lens center or in the vicinity of the lens center and being capable of generating an electric field and a magnetic field; a Wien condition generating means which applies a voltage and a current which satisfy the Wien condition for rotating spin of the electron beam by a designated angle and making the electron beam advance straightly to the multipole which constitutes the spin rotator; and a second condenser lens which focuses the electron beam whose spin is rotated by the spin rotator.
Abstract:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a article beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
Abstract:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
Abstract:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.
Abstract:
A phase-shifting element for shifting a phase of at least a portion of a particle beam is described, as well as a particle beam device having a phase-shifting element of this type. In the phase-shifting element and the particle beam device having a phase-shifting element, components shadowing the particle beam are avoided, so that proper information content is achieved and in which the phase contrast is essentially spatial frequency-independent. The phase-shifting element may have at least one means for generating a non-homogeneous or anisotropic potential. The particle beam device according to the system described herein may be provided with the phase-shifting element.