Abstract:
An electric power generator system is provided with improved power efficiency due to a reduced sensitivity to errors in the sensing of angular rotor position. The system includes a power generator with a rotor, and a position encoder connected to sense angular position of the rotor and to generate a position signal accordingly. A processor receives the position signal, calculates an angular position in response, calculates an estimated angular position based on earlier received position signals, and finally generates a processed angular position based on the calculated angular position and the estimated angular position. This processed angular position is a more reliable measure of the rotor position, reducing the influence of short-term errors in the position signal, allowing normal wind turbine operation during temporary position encoder failure, and allowing an orderly shutdown during complete position encoder failure.
Abstract:
A data output encoder capable of having its state of retaining internal error information and self-diagnostic information reset without recourse to removing power or furnishing a dedicated signal line. A reset pulse generator monitors the changing status of an externally provided output request signal. When the signal status reaches a predetermined pattern, the reset pulse generator generates reset pulses that cause an RS flip-flop circuit to reset the state in which the internal error information and self-diagnostic information are retained.
Abstract:
The present invention aims at providing a light-reflecting rotary encoder which is capable of perfectly matching the timing of the clicking detent sensation and pulse signal generation while also guaranteeing a long useful life, and in order to achieve this objective, an optical element and a ring-shaped magnetic plate are provided which oppose a pulse plate made from a sheet of iron material and rotated by an operating shaft, the pulse plate having reflective portions and non-reflective slits. By this means, the pulse plate can be used for both producing the clicking detent sensation and generating the pulse signal, whereby timing shifts due to differences in the precision of manufacturing or shifts in assembling the components can be eliminated. Moreover, since the clicking detent sensation is generated by the ring-shaped magnet and pulse plate, a light-reflecting encoder with a guaranteed long useful life can be provided.
Abstract:
A rotary encoder includes a rotatable conductor and first and second signal contacts. The rotatable conductor includes a first contact finger that slides on a track which is at least a part of a circle having a center point as a center thereof; and second contact finger that slides on the track and is located at an angular position different from an angular position of the first contact finger. The first signal contact is disposed on the track, and is configured to output a signal according to an angular position of the rotatable conductor about the center point. The second signal contact is disposed on the first track, and is configured to output a signal according to the angular position of the rotatable conductor about the center point. The second signal contact is electrically independent of the first signal contact. This rotary encoder includes a small number of tracks, and accordingly has a small size.
Abstract:
An electric power generator system is provided with improved power efficiency due to a reduced sensitivity to errors in the sensing of angular rotor position. The system includes a power generator with a rotor, and a position encoder connected to sense angular position of the rotor and to generate a position signal accordingly. A processor receives the position signal, calculates an angular position in response, calculates an estimated angular position based on earlier received position signals, and finally generates a processed angular position based on the calculated angular position and the estimated angular position. This processed angular position is a more reliable measure of the rotor position, reducing the influence of short-term errors in the position signal, allowing normal wind turbine operation during temporary position encoder failure, and allowing an orderly shutdown during complete position encoder failure.
Abstract:
An apparatus and method for sensing a rotary switch handling direction of a monitor is disclosed, in which a simple configuration can be obtained and accuracy in sensing a handling direction can be enhanced. The apparatus for sensing a rotary switch handling direction of a monitor includes a rotary switch for outputting voltage levels varied correspondingly depending on a user's handling direction, and a microcomputer for storing the voltage levels output from the rotary switch and comparing the voltage levels with a previously stored voltage change/handling direction table to determine a handling direction of the rotary switch. Since the handling direction is sensed by the voltage level difference for respective contacts, it is possible to exactly sense the handling direction and to relatively obtain a simple configuration.
Abstract:
A circuit for presenting one or more current source outputs which may be used to optimize the interface between optical components in a computer system. The multiple currents may be independently varied in each particular component to provide a current adjustment for proper functioning of a wide variety of LEDs and photo transistors. As a result, a dynamic optimization of the devices is provided. Since the present invention allows a wide variety of optical components to be used, the overall cost of implementing the device may be reduced.
Abstract:
A rotary encoder comprises a case containing a rotary brush setting plate and an idler gear which is associated with an inside gear formed on the brush setting plate and a reduction gear contained in the case and connected to a driving shaft penetrating the case. Brushes on the rotary brush setting plate rotatingly slide on the plural pulse producing conductive patterns formed on inside surface of the case, thereby to effect switching in plural modes as the shaft revolves.
Abstract:
An encoder includes an encoder scale having an optical pattern of a prescribed cycle, and an encoder head configured to be displaced relative to the encoder scale. The encoder head includes a reference voltage generating circuit and a changing unit. The reference voltage generating circuit is configured to generate a reference voltage set to the center amplitude of an encoder signal when the output of the encoder is an encoder signal having periodicity of at least one phase. The changing unit is configured to change the reference voltage generated in the reference voltage generating circuit.
Abstract:
A rotary type encoder is provided with a signal generating portion 2 for generating a sine wave signal of N periods for each revolution in accordance with the rotation of the shaft 4 of a motor; a calculation means for obtaining the rotation angle of the shaft 4 based on the sine wave signal; an EEPROM 37 being arranged in a manner that the error value of the rotation angle for one revolution of the shaft 4 thus measured is divided in relation with the N periods to set a plurality of first angle regions i, the angle region almost at the center of the angle region i is divided into plural regions to set second angle regions j, and an error value corresponding to the angle at almost the center of each of the angle regions j is stored therein in correspondence with the rotation angle; and a correction means for reading the error value stored in the EEPROM 37 in correspondence with the rotation angle to correct the rotation angle.