摘要:
At an optical transmission system that uses plural light sources for Raman amplification, even when a failure occurred in a pumping light source in one of the light sources for Raman amplification, the signal light output level and its wavelength characteristic are not deteriorated at the final stage, and the number of components in the system is not made to be large and the cost of the system is not made to be high. This optical transmission system is provided. At an optical transmission system using “n” light sources for Raman amplification, a first to “n−1”th light sources for Raman amplification do not provide spare pumping light sources, and an “n”th light source for Raman amplification provides the spare pumping light sources. When a pumping light source in one of the “n” light sources for Raman amplification had a failure, the spare pumping light source in the “n”th light source for Raman amplification corresponding to the failure occurred pumping light source is worked. With this, the signal light output level and its wavelength characteristic are recovered to a normal state before the failure occurred.
摘要:
An optical nonlinear medium 1, first and second optical circulators 2, 3 that are connected respectively to a front end and a rear end of the optical nonlinear medium, a first optical amplifier 4 that amplifies an inputted optical signal and causes it to enter the first optical circulator 2, a first optical filter 5 that passes light in a predetermined wavelength range, into which outgoing light passing through the first optical circulator, entering the front end of the optical nonlinear medium and leaving the rear end thereof enters through the second optical circulator, a second optical amplifier 6 that amplifies an optical signal passing through the first optical filter and causes it to enter the second optical circulator 3, and a second optical filter 7 that passes light in a predetermined wavelength range, into which returning light passing through the second optical circulator, entering the rear end of the optical nonlinear medium and leaving the front end thereof enters through the first optical circulator are provided. It is possible to reduce the length of the optical nonlinear medium that is needed for regenerating an optical signal utilizing a nonlinear optical effect.
摘要:
An optical transmission system that alleviates waveform distortions due to nonlinear effects in fibers. A transmitter sends WDM signals to a receiver over a dispersion-managed optical transmission line with in-line optical repeaters. The transmission line is divided into a plurality of dispersion compensation intervals each composed of a main segment and a compensation segment. Chromatic dispersion is managed such that the dispersion compensation intervals have a non-zero net dispersion at every boundary point between them, or such that the number of zero-dispersion boundary points is reduced. The main segment is a series of repeater sections with negative dispersion, while the compensation segment is a single repeater section with positive dispersion. Non-uniform distribution of net chromatic dispersions over the transmission length is achieved by combining repeater section with different average dispersions, dispersion compensation intervals with different numbers of repeater sections, or repeater sections with different span lengths.
摘要:
An optical transmission system having a supervisory system of devices disposed along an optical link. Counter-propagating Raman amplifiers are disposed along the optical link. Low-frequency supervisory signals are superimposed on the optical signals traveling on the optical link by suitable modulators in the devices disposed along the line. Counter-propagating Raman amplifiers amplify optical signals and do not introduce a substantial amount of attenuation on the low-frequency supervisory signals.
摘要:
Repeaters for use in amplifying optical data signals transmitted through undersea fiber optic cables are disclosed. Raman amplification schemes using 100 or more pump lasers are integrated into industry standard sized pressure vessels for amplifying optical data signals transmitted through one or more fiber optic pairs. Such repeaters include high density packaging to permit numerous active and passive optical components, as well as significant lengths of optical fiber, to reside within legacy sized pressure vessels.
摘要:
A Raman amplifier repeater comprising a Raman excitation light production/answer signal superimposition unit for producing a first reply signal for a down-direction line with respect to a monitor control command, an answer signal production unit for producing a second reply signal with respect to the monitor control command, and a command reply switch for selectively using the first reply signal when an optical signal passing through a down-direction line on a second terminal station side is inputted as an answer signal with respect to the monitor control command and the second reply signal when the optical signal is not inputted through the second terminal station side down-direction line. With this configuration, high-quality monitor control is feasible even if a disconnection/break trouble occurs in an optical fiber in conducting the optical amplification repeating by the Raman amplification.
摘要:
An optical amplifying and relaying system capable of easily and highly accurately monitor troubles in optical amplifiers provided in an up and a down optical fiber transmission line opposing each other is disclosed. Monitoring light signal folding-back lines including variable optical attenuators 4a and 4b and wavelength selective reflecting means 5a and 5b, respectively, are provided between optical transmission lines L1 and L2, which oppose each other and on which optical amplifiers 4a and 4b are disposed each other.
摘要:
The present invention relates to an optical level control method for use in an optical transmission system. In the system, a WDM terminal comprises a multiplexing/demultiplexing unit, an amplifier, an up-direction OSC light transmitting/receiving unit, an up-direction multiplexer, an up-direction branching unit, an amplifier and an APR control unit, and a repeater comprises an up-direction branching unit, an OSC light transmitting/receiving unit, an amplifier, an up-direction multiplexer, a down-direction branching unit, an amplifier, a down-direction multiplexer and an APR control unit. In this configuration, a flexible optical output level control in connection with variation in WDM light level, a selective value irrespective of occurrence of an error stemming from the passage of time and avoidable malfunctions are respectively capable. In addition, a trouble retrieving operator can eliminate the possibility of being exposed to the WDM light.
摘要:
Optical systems of the present invention includes power sources that provide dedicated and shared power to a plurality of optical amplification sections. In various embodiments, multiple optical pump sources are provided the include a plurality of optical sources, which supply dedicated optical pump power and shared optical pump power to two or more optical amplification sections. In other embodiments, remote dispersion compensation is performed and Raman amplification is provided to overcome at least a portion of the loss.
摘要:
Flatness of a gain (optical output level) is maintained even when a wavelength division multiplex signal light (WDM signal light) is amplified in an optical amplification utilizing Raman amplification function. The optical amplifier comprises: two (first and second) pumping light sources for Raman amplification for outputting first and second pumping lights; the wavelength multiplexer for Raman amplification for allowing the first and second pumping lights to be incident on optical fiber transmission paths, where the WDM signal light propagates, in the direction opposite to the propagation direction of the signal light. The signal lights are Raman amplified by the both pumping lights. A wavelength of the first pumping light is set such that the gain of the Raman amplified signal light declines in the right direction, and, on the other side, the wavelength of the second pumping light is set such that the gain declines in the left direction. Gradients for showing a relation between the wavelength and the gain in Raman amplification by the first and second pumping lights are made to be in opposite directions from each other. Optical output levels and the wavelengths of the first and second pumping lights are set such that the gains for the signal lights included in the Raman amplified WDM signal light become substantially equal to each other.