Abstract:
A method of transmitting information between a plurality of radioelectric stations and an associated transmission network are disclosed. In one aspect, the method transmits information between radioelectric stations, each station including a transmitter and a receiver, the information including NbMot words of data, NbMot being an integer >1. The transmission method includes: determining at least one polynomial of degree NbMot−1, each of the NbMot coefficients of the polynomial corresponding to a respective word, the polynomial having an indeterminacy, calculating NbRepet polynomial values for the polynomial, NbRepet being an integer >1, each polynomial value being calculated for a respective predetermined value of the indeterminacy, transmitting the calculated polynomial values from one radioelectric station to at least one other radioelectric station, receiving polynomial values by the other radioelectric station, and determining, via the other radioelectric station, the NbMot words from a Lagrange interpolation of the received polynomial values.
Abstract:
Attenuation caused by dispersion in an optical fiber communications system is compensated. A number of low-speed channels is to be transmitted across an optical fiber. Each low-speed channel is allocated a different frequency band for transmission. The attenuation caused by dispersion is estimated for each of the frequency bands. The power of each low-speed channel is adjusted to compensate for the estimated attenuation. The power-adjusted low-speed channels are frequency division multiplexed together to produce an electrical high-speed channel suitable for transmission across the communications system.
Abstract:
Each node in the network broadcasts it unique identifier to the other nodes. Each node assigns a different network address to each of the nodes based on the unique identifier received from the node. However, each node assigns the network addresses in a common predetermined manner. Thus, each node arrives at the same assignment of network addresses. In a preferred embodiment, the assignment of network addresses is maintained as an address table at each node.
Abstract:
Each node in the network broadcasts its unique identifier to the other nodes. Each node assigns a different network address to each of the nodes based on the unique identifier received from the node. However, each node assigns the network addresses in a common predetermined manner. Thus, each node arrives at the same assignment of network addresses. In a preferred embodiment, the assignment of network addresses is maintained as an address table at each node.
Abstract:
A wireless device (14) is configured to perform a random access procedure (16) for random access by the wireless device (14) to a wireless communication system (10). The random access procedure (16) includes multiple messages in sequence. The wireless device (14) is configured to determine a carrier on which a downlink message (18) in the random access procedure (16) is to be received by the wireless device (14), from amongst multiple different carriers (20) which are configurable as said carrier, based on configuration information (22) received from a radio network node (12) indicating said carrier. The downlink message (18) occurs in the random access procedure (16) subsequent to an initial message in the sequence. The wireless device (14) is also configured to receive the downlink message (18) on the determined carrier.
Abstract:
A system may include a receiver having a number of reception channels spread across an instantaneous radio frequency bandwidth, each one of the reception channels for receiving a different radio frequency within the instantaneous radio frequency bandwidth. The system may also include control programming for positioning the receiver on one of a number of synchronization frequencies transmitting a synchronization preamble, where a number of reception channels is less than a number of synchronization frequencies, and a probability of not receiving one or more of the synchronization frequencies is smaller than a required message error rate for receiving the plurality of synchronization frequencies.
Abstract:
Attenuation caused by dispersion in an optical fiber communications system is compensated. A number of low-speed channels is to be transmitted across an optical fiber. Each low-speed channel is allocated a different frequency band for transmission. The attenuation caused by dispersion is estimated for each of the frequency bands. The power of each low-speed channel is adjusted to compensate for the estimated attenuation. The power-adjusted low-speed channels are frequency division multiplexed together to produce an electrical high-speed channel suitable for transmission across the communications system.