Abstract:
A configuration is adopted in which an image sensor unit includes: a sensor substrate on which a plurality of photoelectric conversion elements are mounted; a light source that includes light-emitting elements and is for illuminating a document; a light guide that guides light from the light source from one end face in a longitudinal direction and linearly illuminates the document; a rod lens array imaging reflected light from the document on the sensor substrate; and a frame attaching each of these, and in which the frame detachably includes a spacer provided in proximity to the light source, and the spacer includes a light shield roof elongated so as to cover the light source and the end of the light guide.
Abstract:
An image reading apparatus, including: an image reading unit configured to read an image of a document placed on a document placing portion; a document pressure unit configured to press the document placed on the document placing portion against the document placing portion; a first holding unit configured to hold the document pressure unit so that the document pressure unit is openable and closable with respect to the document placing portion with a shaft pivotally supporting the document pressure unit; and a second holding unit configured to hold the document pressure unit so that the document pressure unit is openable and closable with respect to the document placing portion without a shaft pivotally supporting the document pressure unit.
Abstract:
The reading device includes an image reading unit, a document feeder unit, a table document detection unit for detecting presence or absence of a document on the place-reading contact glass, a document set sensor for detecting setting of the document, a size detection unit for detecting a size of the document on the document tray, and an open/close detection unit for detecting open and close of the document feeder unit. In a determination necessary state in which setting of the document is not detected while an object on the document tray is detected, it is determined to execute feed reading, or to execute place reading, or to be disabled to confirm to execute the place reading or the feed reading, based on whether or not there is a document on the place-reading contact glass and based on history information.
Abstract:
A detecting device having image capturing capability in a bridge structure is provided, which includes a housing, a bridge structure, a scanning module, and a slider. The housing has a plurality of inner walls. The bridge structure includes at least one roller, an ADF transparent layer, and a flatbed transparent layer. The roller is arranged on one of the inner walls between the ADF transparent layer, and the flatbed transparent layer. The scanning module is movably arranged below the ADF transparent layer, and the flatbed transparent layer. The scanning module and the roller are spaced apart from each other. The slider is arranged on the scanning module, where the slider has a glide plane arranged proximate to the ADF transparent layer, and the flatbed transparent layer. The roller rolls on the glide plane. Thus, the lifespan of the device may be extended through reduction of friction during scanning operation.
Abstract:
An image reading apparatus includes: a light irradiating means for irradiating light to a subject having images to be read; an image forming means for making the light from the subject incident on an image plane so as to form images as erected images; and a photoelectric conversion means for converting the incident light of the erected images into image signals, wherein the image forming means is constituted of a plurality of lens arrays that have a mutually identical shape and property and are sequentially disposed, sharing common light axes, between the subject and the photoelectric conversion means, and the respective lens arrays are formed by integral molding of a plurality of lenses, and an aperture provided with light passing holes with the light axes as the center is interposed at least between the plurality of lens arrays, and areas other than the light passing holes in the aperture form light shielding areas.
Abstract:
An erecting equal-magnification lens array plate includes a stack of a plurality lens array plates built such that pairs of corresponding lenses form a coaxial lens system, where each lens array plate is formed with a plurality of convex lenses on both surfaces of the plate. The plate receives light from a substantially straight light source facing one side of the plate, and the plate forms an erect equal-magnification image of the substantially straight light source on an image plane facing the other side of the plate. The main lens arrangement direction differs from the main scanning direction of the erecting equal-magnification lens array plate. The erecting equal-magnification lens array plate is provided with a first light shielding member operative to shield light not contributing to imaging and formed in the neighborhood of a position in the intermediate plane in the erecting equal-magnification lens array plate where an inverted image of the substantially straight light source is formed, and with a second light shielding member operative to reduce the amount of light incident on at least some of the lenses at the periphery in the sub-scanning direction and provided on a lens surface facing a light source.
Abstract:
An erecting equal-magnification lens array plate includes a stack of a plurality lens array plates built such that pairs of corresponding lenses form a coaxial lens system, where each lens array plate is formed with a plurality of convex lenses on both surfaces of the plate. The plate receives light from a substantially straight light source facing one side of the plate, and the plate forms an erect equal-magnification image of the substantially straight light source on an image plane facing the other side of the plate. The main lens arrangement direction differs from the main scanning direction of the erecting equal-magnification lens array plate. The erecting equal-magnification lens array plate is provided with a first light shielding member operative to shield light not contributing to imaging and formed in the neighborhood of a position in the intermediate plane in the erecting equal-magnification lens array plate where an inverted image of the substantially straight light source is formed, and with a second light shielding member operative to reduce the amount of light incident on at least some of the lenses at the periphery in the sub-scanning direction and provided on a lens surface facing a light source.
Abstract:
An optical scanner forms an electrostatic latent image on a photosensitive member by scanning the photosensitive member with a light beam. The optical scanner includes: an incident optical system which at least comprises: a light beam emission device configured to emit a light beam; and a cylindrical lens configured to condense the light beam emitted from the light beam emission device, and a scanning optical system which at least comprises: a light deflecting device configured to reflect the light beam having passed through the cylindrical lens to deflect the light beam in a main scanning direction for scanning the photosensitive member; and a scanning lens configured to focus the light beam deflected by the light deflecting device on the photosensitive member to form an electrostatic latent image thereon. The incident optical system and the scanning optical system are divided by a light shielding wall.
Abstract:
The present invention relates to an apparatus having a light source for a transparent sheet of a scanner that includes a lamp, a reflective plate, a spreading plate and a protective plate. The light rays emitted by the lamp are used to scan a transparent sheet, the reflective plate in the arc shape reflects the light rays onto the scanning platform and there is an aperture on the predetermined position of the reflective plate to decrease the illumination for distributing uniformly the light rays. Besides, the spreading plate has a plurality of perforations to advance the light rays distributed uniformly. The protective plate made of the material pervious to light protects the components of this invention. As those described above, there are many advantages for the present invention, such as the structure is simple, the cost is low, and is much practical and can highly improve the performance of a scanner for a transparent sheet.
Abstract:
Imaging devices and methods that permit the capture of digital images of an original document sequentially illuminated by a plurality of light sources. In one aspect, a first digital image is captured using illumination from a first illumination angle, a second digital image is captured using illumination from a second illumination angle, and the first and second digital images are combined to obtain a composite digital image of the document. The obtained composite digital image is free of reflection artifacts corresponding to the first and second illumination angles.