Abstract:
A method for forming a stereoscopic image having a left-eye image and a right-eye image repeats the steps of directing a line of the left-eye image as incident light toward a scanning element while directing a line of the right-eye image as incident light toward the scanning element, and moving the scanning element into position for directing incident light toward a portion of a display surface.
Abstract:
A visible laser beam scanned by a galvano-scanner system is aligned at each of positioning points on the top surface of a master work by manual operation to record sensor position signals of position sensors on galvano-scanners. The sensor position signals on each positioning point are recorded to create a drive pattern in accordance with recorded sensor position signals. The drive pattern no longer has optics system error sources including focus error and attachment error as well as errors caused by scale, offset and the like, also eliminating the need for entering a distance as far as the top surface of the work. Therefore, the drive pattern with error components removed can be created with ease.
Abstract:
According to the invention, rotating cylinders (1) are provided in at least two locations. Stripes (3) comprising light emitting elements and stripes (2) comprising a recording system resembling a scanner strip are mounted on the rotating cylinders (1) such that the surroundings of one cylinder can be represented on the other cylinder, visual contact being possible. The inventive system can also be configured in a planar manner, e.g. on a revolving band or a plate that is moved back and forth. Said system can also be configured for three-dimensional representation.
Abstract:
A method for forming a stereoscopic image forms separate left-eye and right-eye images in a repeated cycle that forms the left-eye image by providing data for lines of the left-eye image, ordered in sequence from a first to a second edge of an image frame, then forms successive lines of modulated light according to the ordered sequence by progressively scanning lines of modulated light across a display surface by rotating a scanning element forward from a first to a second position. The right-eye image is formed by providing data for lines of the right-eye image, ordered in sequence from the second to the first edge of the image frame and forming successive lines of modulated light, progressively scanning the lines of modulated light across the display surface by rotating the scanning element in reverse from the second to the first position. The left-eye image is distinguished from the right-eye image.
Abstract:
According to the invention, rotating cylinders (1) are provided in at least two locations. Stripes (3) comprising light emitting elements and stripes (2) comprising a recording system resembling a scanner strip are mounted on the rotating cylinders (1) such that the surroundings of one cylinder can be represented on the other cylinder, visual contact being possible. The inventive system can also be configured in a planar manner, e.g. on a revolving band or a plate that is moved back and forth. Said system can also be configured for three-dimensional representation.
Abstract:
An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with an RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.
Abstract:
A surface acoustic wave infrared line imaging array having a first interdigital transducer generating a first surface acoustic wave train amplitude modulated by the temperature profile of the substrate in response to a line segment of a received infrared image, a second interdigital transducer generating a parallel reference surface acoustic wave train, equal in amplitude but 180.degree. out of phase with said first surface acoustic wave train, and a third interdigital transducer for summing the amplitudes of said first and reference surface acoustic wave trains to generate a wave train signal in which the individual waves are amplitude modulated in accordance with the intensity profile of the line segment of the infrared image received by the substrate underlying the first interdigital transducer.
Abstract:
In order to obviate the necessity for providing a complete channel of electronics for each transducer of an array incorporated into a real-time ultrasonic imaging system, all system transducers are disposed in apparent series with a single inductor as to direct current. Charging resistors permit each transducer to slowly capacitively charge to a predetermined voltage under static conditions. When a switching transistor disposed in series with a given transducer is placed in the conducting state, the transducer rapidly discharges and mechanically deflects to introduce an ultrasonic pulse into an object. While the switching transistor remains conductive, the inductor and transducer are in parallel circuit as to echo signals returning to the transducer. When the switching transistor is rendered non-conductive, the transducer again charges capacitively in anticipation of a succeeding cycle. All echo signals sensed are amplified by a single preamplifier and applied to a display which is sweep coordinated with the sequence of transducer energization.
Abstract:
This invention relates to the use of a standing acoustic wave charge storage device 11 as an image readout device. A frequency f.sub.1 22 is applied to the storage transfer device to create a traveling electric field in the device in one direction along a straight line. A second frequency f.sub.2 23 which is a harmonic of f.sub.1, has the same amplitude as f.sub.1, and is phase stable with f.sub.1 is applied to the charge transfer device to create a traveling electric field in the opposite direction to the first traveling electric field. Consequently, a standing wave (FIG. 2) is created in the charge transfer device along the straight line. When an image 25 is focused on the charge transfer device, light is stored in the wells of the standing wave. Thereafter when the frequency f.sub.2 is removed from the device, the standing wave tends to break up (FIG. 3) and the charges stored therein are moved to an electrode 18 which is connected to an output terminal 19. This terminal is connected to a utilization device 28 where the received charges represent the image on the surface of the charge transfer device along a projection of said straight line.
Abstract:
A scanning apparatus for converting an optical line image to a serial electrical analog signal by launching an acoustic wave in a plurality of ridged waveguides each of a different length. In one embodiment the launching transducer includes an electro-optical layer which modulates the acoustic wave as a function of the incident light intensity. In a second embodiment the acoustic wave is launched in each waveguide with the same amplitude but interacts with an acousto-optical overlay on the waveguide to amplitude modulate the intensity of the propagating acoustic wave. The thus generated and modulated acoustic waves are converted to electrical signals either by reflection back to the launching transducer or by individual transducers on each channel. The differing lengths converts the parallel image to a series electrical signal.