Abstract:
A fixing rotating member comprising: a cylindrical base member comprising at least a resin; an electro-conductive layer on the base member; and a resinous layer on a surface of the electro-conductive layer, the surface being opposed to a surface facing the base member, the electro-conductive layer extending in a circumferential direction of an outer circumferential surface of the base member, the electro-conductive layer comprising silver, the electro-conductive layer having a volume resistivity of 1.0×10−8 to 8.0×10−8 Ω·m, and the electroconductive layer having a compressive elastic modulus of 8 to 30 GPa, the elastic modulus being measured by contacting an indenter with a first surface of the electroconductive layer opposite to a surface facing the base member, and the elastic modulus being an average value of elastic moduli of a thickness region of 0.1 to 0.2 μm from the first surface of the electroconductive layer.
Abstract:
A cartridge for an electrically heatable aerosol-generating system is provided, the system including an aerosol-generating device, the cartridge configured to be used with the device, the device including a device housing defining a cavity to receive the cartridge, an inductor coil around or adjacent to the cavity, and a power supply connected to the coil and to provide a high-frequency oscillating current; the cartridge including: a cartridge housing to engage the device housing and containing an aerosol-forming substrate, the cartridge housing having an external surface, at least part of which is formed by a fluid permeable susceptor element that is electrically isolated from any other electrically conductive components; a first capillary material in the cartridge housing in contact with the susceptor element; and a second capillary material in the cartridge housing in contact with the first material, the first material having a higher thermal decomposition temperature than the second material.
Abstract:
A heating coil is configured to inductively heat an inner surface of a tubular workpiece. The heating coil includes a head portion configured to be inserted into the workpiece and to inductively heat the inner surface of the workpiece, and a pair of lead portions connected to one end of the head portion and the other end of the head portion respectively. The head portion and the lead portions are configured as pipe members forming a series of flow channels through which coolant flows. A cross-sectional area of the flow channel inside each of the lead portion is greater than a cross-sectional area of the flow channel inside the head portion.
Abstract:
Systems, devices, and methods for heating an inside wall of a pipe or a vessel. In one example, a system is for heating an inside wall of a pipe, a vessel, or some combination thereof. The system includes a movable mechanical device configured to be positioned at least partially within the pipe, the vessel, or some combination thereof. The movable mechanical device is configured to be moved using control circuitry. The system also includes a heating device coupled to the movable mechanical device and configured to be positioned at least partially within the pipe, the vessel, or some combination thereof. The heating device is also configured to heat the inside wall of the pipe, the vessel, or some combination thereof.
Abstract:
An induction heating element includes a primary conductive portion and a secondary conductive portion. The primary conductive portion is connected to a power source, and conducts electric current from the power source to generate a magnetic field that inductively heats a portion of the workpiece. The secondary conductive portion is electrically insulated from the primary portion, and receives an induced electric current from the primary portion to affect the magnetic field generated by the primary portion.
Abstract:
Disclosed are methods, systems and apparatus for manufacturing complex three dimensional open structures by cold forming the component from unhardened metal stock and then selectively heating and quenching the metal to provide the desired strength profile across the component. The metal is initially formed of unheated and unhardened metal through a combination of rolling, stamping and/or milling operations to produce a component having a complex three dimensional open structure. The formed component is then hardened in strategically predetermined areas by sequentially heating and quenching the predetermined areas of the component. The heating and cooling elements are, in turn, provided on at least one robotic apparatus configured for moving the elements across the surface of the component in a manner sufficient to achieve the desired pattern of hardened and unhardened regions across the component.
Abstract:
Apparatus and method for inductive heating of a material located in a channel. In one embodiment, the heating assembly comprises an interior coil, an exterior sheath inductively coupled to the coil, a dielectric material disposed between the coil and sheath, and a conductor for supplying a signal to the coil to generate the magnetic flux for inductive heating of the sheath. The heating assembly is disposed in the material in the channel, and the magnetic flux generated by the coil may also inductively couple to the material in the channel. The material may be heated from a nonflowable to a flowable state, such as heating a metal or polymer plug formed in a melt channel of a molding apparatus.
Abstract:
Apparatus and method for inductive heating wherein an internal inductive heating assembly is provided within a bore of a solid article. The heating assembly includes an interior coil inductively coupled to a portion of the article adjacent the bore to inductively heat the article. The heating assembly lacks an internal cooling mechanism and the coil thermally coupled to the adjacent article portion for transmission of heat from the coil to the article. A signal is provided to the coil to generate a magnetic flux for inductive heating of the adjacent article portion.
Abstract:
The induction coil of a device that heats a toolholder (1) inductively for the tool change comprises a shielding collar (27) of magnetizable material which, firstly, concentrates the magnetic flux of the induction coil (13) in a sleeve section (5) of the toolholder (1) which holds the shaft (11) of a rotary tool with a press fit and, secondly, shields the part of the tool shaft (11) that projects out of the sleeve extension (5), in order to facilitate unclamping the tool from the toolholder (1). On its side facing the winding (19) of the induction coil (13) axially, the shielding collar (27) has an outer circumferential surface (31) which widens conically away from the sleeve extension (5) and an axial height (h) which is at least 1.5 times the diameter (d) of the tool shaft (11). The shielding collar (27) runs on all sides at a distance from a yoke shell (23) of magnetizable material which encases the winding (19) of the induction coil (13).
Abstract:
A high frequency heating coil device having sufficient flexibility and heating ability is provided. Coils 2 are contained in outer jacket 1. The coils 2 are made of steel, copper or brass tubing which is annealed sufficiently to be flexible. Plural pieces of magnetic substance 10 are arranged in series between the coils 2. Flexible spacer 9 is arranged between a magnetic substance 10 and the coils 2. Upper and lower end faces of each piece of the magnetic substance 10, make direct contact with other adjacent pieces, and are made with curved faces a. Heating coil device is so constructed that when inserted into a hole of an object to be heated and high frequency current is supplied to the coils to the coils 2 from electric source 6, eddy currents are generated in an inner surface of the hole in order to heat the object. The heating coil device, while being bent to avoid obstructions, can still be inserted into and drawn out of the hole.