摘要:
A temperature sensor according to the disclosure herein includes an optical fiber structured to produce a thermal emission representative of a molten steel into which the temperature sensor is inserted; a cladding layer covering at least a portion of the optical fiber; and a spectrometer configured to receive the thermal emission from the optical fiber and to generate, in response, a radiation spectrum indicative of a temperature of the molten steel.
摘要:
A power supply system for an arc furnace, suitable for converting voltage of a three-phase electric power network into power supply voltage for the arc furnace, has an indirect AC/AC converter having a converter input and a converter output, and a matching apparatus having a matching transformer having a secondary side connectable to the arc furnace and a primary side operatively connected to the converter output. An input transformer group, inserted between the indirect AC/AC converter and the three-phase electric power network, has an input transformer primary side connectable to the three-phase electric power system, an input transformer secondary side connected to the converter input, a first input transformer and a second input transformer. Each of the first and second input transformers has three mutually displaced groups of secondary windings, each of which has a winding for each phase corresponding to a phase of the three-phase electric power network.
摘要:
It is proposed herein to employ thyristor firing angles as a fast prediction of flicker in power supply for an electric arc furnace. It is further proposed to actively modify operating variables for the electric arc furnace to maintain the flicker below a predefined threshold. Aspects of the present application use the thyristor firing angles in combination with control ranges of variable reactance devices to predict the flicker severity level generated by the electric arc furnace with thyristor-controlled variable reactance devices. Based on the predicted flicker level, at least one operating variable of the electric arc furnace may be changed, if required, to maintain flicker to acceptable limit.
摘要:
In a method for operating an electric arc furnace operated with an alternating voltage, a structure-borne sound signal occurring on a wall of the electric arc furnace is detected, from which structure-borne sound signal a parameter characterizing the flicker properties of the electric arc furnace is calculated. At least one process variable of the electric arc furnace is controlled on the basis of the calculated parameter. An electric arc furnace operated according to the method is used in and for a melting plant.
摘要:
Disclosed is a control system for a melting process in an electric arc furnace for melting a metallic material that minimizes desired process properties such as the melting time or the total power consumption of the melting process. The system includes a processing unit adapted for receiving or collecting measured data of at least one process variable, determining the current state of the process, performing an optimization of the melting process, determining a process input based on the result of the optimization, and controlling the melting process with the process input. A method is also presented herein.
摘要:
Disclosed is a device and a method for regulating an electric arc furnace (10) in the initial phase of a smelting process. A sensor (16) for measuring the present voltage and a sensor (15) for measuring the presently flowing current are provided in each line (7) of the electric arc furnace (10). The actual impedance (Zist) is time-dependently calculated by a control and regulating unit (30). An on-load tap changer (20) that is constructed as a semiconductor tap changer, is assigned to a furnace transformer (6) with a primary side (6P) and a secondary side (6S). The semiconductor tap changer (20) realizes a cycle time of a few milliseconds.
摘要:
A method of controlling a melting process in an electric arc furnace for melting a metallic material. By means of the present disclosure it is possible to minimize desired process properties such as the melting time or the total power consumption of the melting process. The method includes the steps of receiving or collecting measured data of at least one process variable, determining the current state of the process, performing an optimization of the melting process, determining a process input based on the result of the optimization, and controlling the melting process by means of the process input. A control system is also presented herein.
摘要:
In a method for operating an electric arc furnace operated with an alternating voltage, a structure-borne sound signal occurring on a wall of the electric arc furnace is detected, from which structure-borne sound signal a parameter characterizing the flicker properties of the electric arc furnace is calculated. At least one process variable of the electric arc furnace is controlled on the basis of the calculated parameter. An electric arc furnace operated according to the method is used in and for a melting plant.
摘要:
In a method, a variable characterising an operational state of an electrode of an arc furnace can be determined. An electrode flow guided to the electrode is detected in the method and the structure-borne noise oscillations are detected. From the detected electrode flow, a flow evaluation signal associated with the frequency range of the detected electrode flow is determined. From the detected structure-borne noise oscillations, an oscillation evaluation signal that is associated with a frequency range of the detected structure-borne noise oscillations is detected and a quotient from the oscillation evaluation signal and the flow evaluation signal is formed as a radiation measurement for at least one frequency common to the detected electrode flow and the detected structure-borne noise oscillation.
摘要:
A method for controlling a melt process in an arc furnace and signal processing component, program code, and data medium for performing said method are provided. According to the method, sound signals or vibrations from the interior of the furnace container are captured by solid-borne sound sensors, from which characteristic values can be derived for the distribution of melting material, melt, and slag in the furnace fill. A characteristic value SM for thermal radiation impinging on the furnace wall of the container, a characteristic value M for the lumpiness of the melting material in the volume of furnace fill, and a characteristic value MM for the change to the portion of solid melting material contacting the furnace wall are generated in priority sequence. The energy distribution at the electrodes is changed by a control system analyzing the characteristic values in priority sequence, such that thermal load peaks are dampened or even completely prevented. To this end, the strand impedances stored as target values are modified. If the control is not sufficient, the thermal power of the arc is reduced as a subordinate means. A rapidly and reliably effective operating regime for the processes in the arc furnace can thereby be implemented.