摘要:
A hybrid linear accelerator is disclosed comprising a standing wave linear accelerator section (“SW section”) followed by a travelling wave linear accelerator section (“TW section”). In one example, RF power is provided to the TW section and power not used by the TW section is provided to the SW section via a waveguide. An RF switch, an RF phase adjuster, and/or an RF power adjuster is provided along the waveguide to change the energy and/or phase of the RF power provided to the SW section. In another example, RF power is provided to both the SW section and the TW section, and RF power not used by the TW section is provided to the SW section, via an RF switch, an RF phase adjuster, and/or an RF power. In another example, an RF load is matched to the output of the TW section by an RF switch.
摘要:
A Hybrid (SW+TW) Linear Accelerator is disclosed having high beam efficiency and broad energy regulation that is useful for security inspection, non-destructive testing, radiotherapy, and electron beam irradiation of objects. The Hybrid Linear Accelerator (LINAC) provides superior energy regulation, and includes a reversed RF power distribution which substantially improves RF power utilization, thereby eliminating need for an output RF load, and ensuring broad electron beam energy regulation operating in a broad range of input RF power, thereby efficiently running at a variety of input electron beam current intensities at high efficiency. The Hybrid LINAC may be equipped with a fast and/or slow phase shifter and/or a power regulator having a phase shifter and a current regulator, while operating much more efficiently than known LINACS. The Hybrid LINAC permits efficient operation without an external magnetic field, thereby avoiding use of a power-consuming solenoid, consequently reducing cost of production, operation, and maintenance.
摘要:
A Hybrid (SW+TW) Linear Acellerator is disclosed having high beam efficiency and broad energy regulation that is useful for security inspection, non-destructive testing, radiotherapy, and electron beam irradiation of objects. The Hybrid Linear Accelerator (LINAC) provides superior energy regulation, and includes a reversed RF power distribution which substantially improves RF power utilization, thereby eliminating need for an output RF load, and ensuring broad electron beam energy regulation operating in a broad range of input RF power, thereby efficiently running at a variety of input electron beam current intensities at high efficiency. The Hybrid LINAC may be equipped with a fast and/or slow phase shifter and/or a power regulator having a phase shifter and a current regulator, while operating much more efficiently than known LINACS. The Hybrid LINAC permits efficient operation without an external magnetic field, thereby avoiding use of a power-consuming solenoid, consequently reducing cost of production, operation, and maintenance.
摘要:
A hybrid linear accelerator is disclosed comprising a standing wave linear accelerator section (“SW section”) followed by a travelling wave linear accelerator section (“TW section”). In one example, RF power is provided to the TW section and power not used by the TW section is provided to the SW section via a waveguide. An RF switch, an RF phase adjuster, and/or an RF power adjuster is provided along the waveguide to change the energy and/or phase of the RF power provided to the SW section. In another example, RF power is provided to both the SW section and the TW section, and RF power not used by the TW section is provided to the SW section, via an RF switch, an RF phase adjuster, and/or an RF power. In another example, an RF load is matched to the output of the TW section by an RF switch.
摘要:
A method of manufacturing a radio frequency accelerator that accelerates charged particles injected into a second-stage linear accelerator from a first-stage linear accelerator includes a step of setting a value of a power distribution factor R for the power distributor to supply radio frequency power to the second-stage linear accelerator and a value of a ratio L/ω of a length L of the matching section between the outlet of the first-stage linear accelerator and the inlet of the second-stage linear accelerator to the angular frequency ω of the radio frequency power, so that a charged particle beam is extracted from the second-stage linear accelerator over a range of the total radio frequency power wider than a widest allowable range among allowable total radio frequency power ranges determined for each phase of charged particles on the basis of phase acceptance of the second-stage accelerator.
摘要:
A method of manufacturing a radio frequency accelerator that accelerates charged particles injected into a second-stage linear accelerator from a first-stage linear accelerator includes a step of setting a value of a power distribution factor R for the power distributor to supply radio frequency power to the second-stage linear accelerator and a value of a ratio L/ω of a length L of the matching section between the outlet of the first-stage linear accelerator and the inlet of the second-stage linear accelerator to the angular frequency ω of the radio frequency power, so that a charged particle beam is extracted from the second-stage linear accelerator over a range of the total radio frequency power wider than a widest allowable range among allowable total radio frequency power ranges determined for each phase of charged particles on the basis of phase acceptance of the second-stage accelerator.