Abstract:
A monitoring system is disclosed for a heating, ventilation, or air conditioning (HVAC) system of a residential or commercial building. The monitoring system includes an evaporator unit device including a first current sensor that measures current supplied to a circulator blower. The measured current from the first current sensor is used to diagnose a problem with the circulator blower. The monitoring system includes a first temperature sensor that measures refrigerant temperature between a condenser and an expansion valve. The monitoring system includes a second temperature sensor that measures refrigerant temperature between an evaporator and a compressor. The monitoring system includes a condenser unit device that communicates with the evaporator unit device. The condenser unit device includes a second current sensor that measures current supplied to the compressor. The evaporator unit device transmits sensor data to a remote monitoring service over a data network.
Abstract:
A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. The system includes a processor that measures power provided to the refrigerant-cycle system and gathers data from one or more sensors in connection with a filter element.
Abstract:
Methods of monitoring operation of a refrigerant-cycle system are disclosed. The methods include: measuring a first pressure of refrigerant input to a compressor of the refrigerant-cycle system using a first pressure sensor; measuring a first temperature of the refrigerant input to the compressor using a first temperature sensor; measuring a second pressure of refrigerant output by the compressor and input to a condenser of the refrigerant-cycle system using a second pressure sensor; measuring a second temperature of refrigerant output by the condenser using a second temperature sensor; measuring a third pressure of refrigerant output by the condenser using a third pressure sensor; and measuring current to the compressor using an electrical sensor. The methods further include identifying conditions of the refrigerant-cycle system based on the first temperature, the first pressure, the second temperature, the second pressure, the third pressure, and the current.
Abstract:
A monitoring system for an HVAC system including an evaporator unit device, first and second temperature sensors, and a condenser unit. The evaporator unit device includes a first current sensor that measures current provided to a circulator blower and a differential pressure sensor that measures pressure between a point prior to a filter element and a point after the filter element. The first temperature sensor measures a refrigerant temperature between a condenser and an expansion valve. The second temperature sensor measures a refrigerant temperature between an evaporator and a compressor. The condenser unit device communicates with the evaporator unit device over low-voltage control lines, wherein the condenser unit comprises a second current sensor that measures current provided to the compressor. The evaporator unit device transmits sensor data to a remote monitoring service over a data network. An efficiency of the HVAC system is calculated based on the sensor data.
Abstract:
A monitoring system for monitoring operation of a refrigerant-cycle system is disclosed. An electrical sensor measures an electrical quantity indicative of power consumption of a component of the refrigerant-cycle system. A processing system selectively identifies a condition indicative of an airflow restriction through the refrigerant-cycle system based on the power consumption of the component.
Abstract:
A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.
Abstract:
A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.
Abstract:
A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.
Abstract:
A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.
Abstract:
A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.