Abstract:
Humidifying and cleaning device of the present disclosure includes: centrifugal crushing unit that generates hypochlorous acid water micronized by a micronization operation for micronizing hypochlorous acid water stored in humidifier tank, and causes air flowing inside of the humidifying and cleaning unit to contain and release the hypochlorous acid water micronized by the micronization operation; and humidification controller that controls the micronization operation. Humidification controller is configured to perform a first treatment of draining the hypochlorous acid water stored in humidifier tank and supplying new hypochlorous acid water based on time information specified in advance during the micronization operation, that is, time information from when the micronization operation is started until a content of the hypochlorous acid contained in the hypochlorous acid water stored in humidifier tank becomes less than or equal to a reference content.
Abstract:
Disclosed is a device for efficiently recycling nickel from wastewater and a method. The device includes a housing, and an extraction unit and an electro-deposition unit which are respectively arranged inside the housing. The device is reasonable in overall structural design. An oscillating and floating component and a rotating component in an extraction cavity are used to fully and uniformly mix a solution to maximize the extraction strength. A mixing component in an electro-deposition cavity is used to accelerate ion dispersion, to better recycle nickel. The device is easy to operate, low in cost and suitable for mass promotion.
Abstract:
The invention relates to a easily adaptable or DIY installation water cleaning device on any existing spa or pool, said cleaning device including an electrolysis module equipped with a particular boron-doped diamond electrode on silicum substrate. The inventions also relates to a method to clean water on spa or pools using a water cleaning device comprising said particular boron-doped diamond electrode present on the elecrolysis module. The invention also relates to electrolyzed bathing water for use in the treatment of inflammatory diseases of the skin and for use for use in the treatment of wound healing of the skin.
Abstract:
An electrochemical reactor for electrochemically treating water, including a shell structure defining an inner space. The shell structure further includes an inlet portion having an inlet for conducting a water flow to the inner space, and a reactor chamber in flow connection with the inlet portion, and preferably with an outlet portion. The inlet is arranged such that the water flow to the inner space is directed away from the reactor chamber so as to cause the water flow to mix by forcing the water flow to change direction before entering the reactor chamber. A water treatment apparatus having such a reactor, and the use of such a reactor are also disclosed.
Abstract:
A rod-shaped electrolysis device having an electrically conductive housing, wherein in the housing, a receiving space for at least one voltage source and an electronic control unit is embodied which is separated from an electrode space formed in the housing in a liquid-tight manner, and wherein an electrode extends within the electrode space, and wherein in the housing, at least one opening is formed in the region of the electrode space. The electrolysis device is characterized in that the housing comprises a receiving socket which is electrically connected both with the housing and the electrode. Via the receiving socket, the residual voltage of a voltage source and also the charging of a rechargeable voltage source may be measured. Furthermore, a data memory may be read out via the receiving socket.
Abstract:
The invention relates to technical conditions of composition and use applied to the existing method and device for extracting heavy metals from an aqueous solution with a high salt concentration, with the single aim of adapting said method to technical, technological and ecological developments that have taken place since the protection thereof, and substantially optimising the results. To this end, the invention of the present patent application adds, to the device of the initial patent, an electronic control means (MC) that can manage three new actions. Disclosed are also modifications in the quality, function, destination and operation of certain elements of the device as well as the addition of a filter at the end of the electroplating operation, the purpose of which is to optimise the quality of the rejected effluent.
Abstract:
A filter unit may include an electrode structure, a fluid-purifying flow path, and a pH adjusting chamber. The electrode structure may include a cathode, a cation exchange membrane, an anion exchange membrane, and an anode in that order. The fluid-purifying flow path may be at least one of a path in the cathode, between the cathode and the cation exchange membrane, between the anion exchange membrane and the anode, and in the anode. The fluid-purifying flow path may include an adsorption function. The pH adjusting chamber may be between the cation exchange membrane and the anion exchange membrane. The pH adjusting chamber may be configured to control the pH of the fluid in the fluid-purifying flow path.
Abstract:
The invention relates to a system for a point-of-use electrochemical generation of hypochlorite on demand in a wide range of volumes and concentration. The system is provided with a processor which adjusts the electrolyte composition, the current density and the electrolysis time, commanding an alert system capable of warning in advance whenever the replacement of electrodes is needed. Automated detection of the insertion and the correct type of several collecting vessels can also be provided, triggering the set-up of electrolysis parameters accordingly.
Abstract:
An oxygen emitter which is an electrolytic cell is disclosed. When the anode and cathode are separated by a critical distance, very small microbubbles and nanobubbles of oxygen are generated. The very small oxygen bubbles remain in suspension, forming a solution supersaturated in oxygen. A flow-through model for oxygenating flowing water is disclosed. The use of supersaturated water for enhancing the growth of plants is disclosed. Methods for applying supersaturated water to plants manually, by drip irrigation or in hydroponic culture are described. The treatment of waste water by raising the dissolved oxygen with the use of an oxygen emitter is disclosed.
Abstract:
To remove a contaminant from a liquid, a pulsed electrical arc discharge is effected between two electrodes immersed in the liquid, thereby creating a plurality of particles within the liquid. One or both of the electrodes is metallic, for example iron or titanium. Before the pulsed electrical arc discharge is terminated, another step that promotes destruction of the contaminant by particles, such as removing the particles from the liquid or adding an oxidizer to the liquid, is performed. In the case of the extra step being adding an oxidizer to the liquid, preferably the termination of the pulsed electrical arc discharge is followed by allowing the liquid and the particles therein to age.