Abstract:
An elongated drill bit has a shank at one end and working end at the other. A flute portion is between the working end and the shank. The flute portion is continuous with the shank and working end and is generally unitarily formed with them. The flute portion has at least one flute with a helix angle between approximately 30° and 35°. The working end has a pilot tip with a cutting portion. A tapered web is formed in the flute portion, a thickness of the web at the tip of the working end is about 9% to 15% of the nominal diameter.
Abstract:
A spade bit includes a shaft defining an axis, and a blade attached to the shaft and having a first blade portion and a second blade portion. The first blade portion defines a first leading face portion, and the second blade portion defines a second leading face portion. The first blade portion defines a first cutting edge portion, and the second blade portion defines a second cutting edge portion. The first cutting edge portion lies on a first border portion of the first leading face portion, and the second cutting edge portion lies on a second border portion of the second leading face portion. The first cutting edge portion and the second cutting edge portion both lie in a plane P1. An area A1 is bound by the plane P1 and the first leading face portion when the first blade portion is viewed in a first cross section taken along a plane P2 which is parallel to and spaced apart from the axis by a distance D1, and the area A1 increases as the distance D1 increases. The area A2 is bound by the plane P1 and the second leading face portion when the second blade portion is viewed in a second cross section taken along a plane P3 which is parallel to and spaced apart from the axis by a distance D2, and the area A2 increases as the distance D2 increases.
Abstract:
A drill steel includes a drill bit and a reamer bit. The drill steel rotates the drill bit to form a hole in a work surface and drives forward to insert the reamer bit into the hole. The reamer bit includes a plurality of inserts positioned on a cylindrical drilling surface to ream out the hole by carving channels in the hole interior surface. The inserts include cutting elements that have radiused or arcuate edges.
Abstract:
A spade drill bit has a shaft and a spade head portion arranged on the shaft. The head portion has a rearward facing bottom edge, two longitudinal sides and a forward facing cutting edge. The cutting edge has a pointed, generally triangularly shaped tip and outer ends. The longitudinal sides of the head portion are bent along a bend in a direction of rotation of the drill bit during operation, so that the outer ends are bent forwards in the rotating direction. The bend runs from a first position at one of the longitudinal sides, closer to the bottom edge than to the cutting edge, and to a second position at the cutting edge between the outer end and the tip.
Abstract:
The invention concerns a hard-metal cutting tip for use on a drill, particularly on a rock or concrete drill, including a drill point (3) extending through an axis of rotation of the drill, primary cutting edges (6) that slope downwardly on both sides, each composed of a primary land (4) and a primary flank (5), the primary flank (5) forming at the primary cutting edge (6) a primary lip clearance angle (14) with a plane perpendicular to the axis of rotation. To provide a hard-metal cutting tip that possesses high cutting, feed, bending and breaking strength and wear resistance, especially at its outer regions subjected to high peripheral speeds, the hard-metal cutting tip is realized such that the primary lip clearance angle (14) formed at the primary cutting edge (6) decreases with increasing distance from the drill point (3).
Abstract:
The spade-type boring bit includes an elongate shank defining a central longitudinal axis and a blade portion joined to one end of the shank and including a pair of generally flat side segments extending laterally from the central longitudinal axis. Each side segment includes a respective forward cutting edge which are aligned with each other along a centerline which passes through the central longitudinal axis of the elongate shaft so as to increase the efficiency with which the spade bit drills. The spade bit also includes a spur joined to and extending axially from the forward end of the blade portion. The spur can include spur cutting edges separated radially, angularly and, in some instances, longitudinally or axially from the forward cutting edge of the adjacent side segment to prevent accumulation of chip swarf between the spur cutting edge and the adjacent forward cutting edge. The present invention also provides a method and apparatus of forging a plurality of parts from a continuous metal stock which provides for rapid fabrication of parts having fine features, such as a spade bit. In particular, the continuous metal stock is incrementally advanced and the leading portion of the metal stock is clamped following each incremental advance. Thereafter, a portion of the metal stock is forged, such as with radially closed dies which impart axial and radial forces to the metal stock which, in turn, generate compressive, tensile and shear stresses within the workpiece. The longitudinal growth of the continuous metal stock created during the forging is compensated by permitting upstream longitudinal constraint or movement of the continuous metal stock as appropriate for forming the part.
Abstract:
A spade-type drill bit is disclosed having a shank portion and a spade bit portion extending from the shank portion. The spade bit portion includes a spade portion with a planar region, and a center tip concentric with a longitudinal axis and extending from the spade portion. First and second radial cutting edges extend from the center tip toward first and second corner tips. First and second longitudinal cutting edges extend along longitudinal sides of the spade portion and terminate at the first and second corner tips. The first and second corner tips are located forward of the plane of the spade portion in the direction of rotation of the drill bit. The first and second radial cutting edges, and the first and second longitudinal cutting edges further include curved portions adjacent each of the first and second corner tips. Threads may also be provided on the center tip. A method of manufacturing is disclosed wherein each of the corner tips are formed by cutting from a smashed planar portion of a round rod an outline of the spade bit and further bending each of the corner tips in a direction of rotation of the spade bit.
Abstract:
A rotary drill bit for hand-held power drills comprises successively, a cutting section of progressively increasing diameter, a section of decreasing diameter and a shank portion for mounting the bit in a hand-held electric drill. The cutting section of the bit comprises a plurality of cutting edges disposed symetrically about the axis of rotation of the bit and extending rearwardly from the apex at an angle to the axis. The cutting edges have cutting portions and noncutting portions which are so-arranged that the cutting portions of one cutting edge cut selected diameters of a hole to be bored and cutting portions of another cutting edge cut other diameters of the hole whereby all cutting edges together cut all diameters of the hole. The sum of the lengths of the cutting portions of all of the cutting edges is approximately equal to the total length of one cutting edge so that the torque required to turn the bit is reduced. The cutting portions are disposed approximately to balance lateral forces on the bit during boring.
Abstract:
A self-drilling screw having an elongated threaded shank with a driving head at one end and a drilling body portion at its other end formed with longitudinally extending flutes located substantially on opposite sides of the body, these flutes defining rectilinear tip and side cutting edges positioned along opposite sides of the body, the tip-cutting edges being forwardly offset and angularly diverging from the ends of a transverse cutting edge, formed on a tip web, to diametral opposite points on the body providing a transverse width at least equal to the root diameter of the threads on the shank, and at which points the tip-cutting edges connect with the side-cutting edges which are angularly inclined towards their outer ends in a rearward direction circumferentially of the body and in a radially inwardly direction of said body. Narrow inwardly inclined relief planar surfaces parallel the respective cutting edges, and are augmented by a plurality of additional contiguous back relief planar surfaces of greater angular inclination than the relief surfaces extending immediately along the cutting edges.
Abstract:
A self-drilling and self-tapping fastener, particularly suitable for use in relatively thick metal, which is made from a headed blank by a method including pressing into the cylindrical free end of the blank a pair of straight flutes, by dies which are closed together on a line which is acutely angled to both the leading and trailing walls of the flutes. The flutes are inclined in opposite directions relative to the screw axis and are positioned on opposite sides of the screw. The tip is machined off to a V-form, to provide a ridge angularly advanced about the axis of the screw relative to the cutting edges of the flutes. Further machining may remove metal from the sides of the drill point between the flutes to provide flats and the drill point may be turned to a circular cross-section to provide sharp well-supported cutting edges for improved wear resistance. The drill point may taper overall, being of smallest diameter adjacent the threaded fastener shank.