Abstract:
A system and apparatus are disclosed for preparing tubular prostheses from a sheet of tissue and inner and outer helical frame components. The tissue is wrapped around the inner frame component over an assembly mandrel. The outer helical frame component is then transferred from an elongate support over a lead screw, onto the assembly mandrel by rotating the assembly mandrel and lead screw in a manner which positions the outer helical frame component in an appropriate manner. Optionally, the mandrel is collapsed to facilitate removal of the completed tubular prosthesis.
Abstract:
A coil winding system and process is provided that includes a coil winding fixture and a coil press fixture. The coil winding fixture includes a pair of winding arms each having a set of in-line winding pins. The sets of in-line pins are arranged parallel to one another in one axis, and form an angle to another axis. Magnetic wire is machine wound into the slots between the pins to form coil phases, and, advantageously the individual coils can be wound together to minimize spatial tolerance build-up between phases. Likewise the slots are arranged parallel and adjacent one another to ensure that each winding is parallel to the next to maximize efficiency of the coils. The press fixture includes a forming press and a saddle to form the wound coils into a predetermined shape using heat and pressure applied to the press fixture.
Abstract:
A rectangular single coil of a coil unit for a linear motor is fabracated by winding a single conductive wire. A winding former having locks for a conductive wire at positions corresponding to vertices of the rectangular single coil is rotated by 180 degrees about an X-axis, by 180 degrees about a Y-axis, alternately by first and second rotating mechanisms. Thereby, a single conductive wire fed out in the direction of a Z-axis from a conductive wire feeding out machine is wound while locked to the locks of the winding former in succession.
Abstract:
The present invention aims at providing a method of wire winding without the failure of engagement of the wire caused by the deviation of position of a nozzle and bobbin terminal. The method is characterized in that, in the case of winding wire around the outer peripheries of rotating wind-up tools of which the peripheries are parallel to their axes of rotation, each wind-up tool 8 is attached to each of a plurality of spinning bodies 6 each of which has the rotation axis same as the wind-up tool, a rotation driving source is provided for each spinning body 6 for winding the wire, and the rotation driving sources are rotated in synchronism with each other.
Abstract:
An in-situ curing filament winding process for making high quality flywheel rims at low cost, and the rims made by the process, and also an apparatus for performing the process, continuously cures resin during the filament winding process. A lower winding process temperature is used along with a lower cure temperature and inherently higher toughness epoxy resin system allows for the rim to be wound continuously, using a conservative radial deposition rate of approximately ¼-½ inch per hour. Multiple types of fibers can be used in a rim where they best serve the strength and stiffness requirements of the structure. The winding temperature can be kept at approximately 55° C.-80° C., providing low thermal residual stresses. Aliphatic amine or ether amine curing agents with epoxy resin generally work well to reduce the winding temperature and allow low viscosity, but other resin systems that provide similar characteristics can be used.
Abstract:
A coil former allows transposition between layers of turns in a coil to be accomplished without damage. The transpositions can be made in a short side of the coil. The former has finned portions which guide the wire into the correct locations during winding. When the coil is wound, the former is disassembled and the end portions are pulled towards the center of the former and turned through 90° to be removed. A method of using the former is described.
Abstract:
A device for coiling and uncoiling elongated goods (K), such as wire, cable or the like, onto a drum (13) comprises a support (12) with driving means (25) for a spreader arm (10). The spreader arm (10) is rotatably mounted on the support (12) and supports a gripping arm (14) for coiling and uncoiling the elongated goods (K) onto the stationary drum (13). The gripping arm (14) is formed as a curved V-profile having a running track arranged for the elongated goods (K), which running track is oriented towards the drum (13). The said running track is defined by feeding rollers mounted within the gripping arm (14). The feeding rollers are spherical in shape and have a rolling resistance near zero to eliminate twisting of the elongated goods (K) during coiling and uncoiling. The device also comprises a lifting and rotating table (15) provided under the drum (13) for making possible 180° rotation of the drum (13), which has a coupling (16, 27) to the support (12) detachably arranged during lifting of the drum (13).
Abstract:
A tool capable of wrapping and unwrapping wires on terminals is provided with a quick-release mechanism to allow rapid and simple replacements of bits and sleeves used for the wrapping and unwrapping functions. This feature uses a bit driver comprising a camming surface that cooperates with a collet having a tapered split end for holding the bit and sleeve loosely or a gripping relationship for driving the bit. A novel bit/sleeve combination is capable of wrapping wires on terminals when rotated in one direction and unwrapping wires from terminals when rotated in the opposite direction. The tool also features a motor reversing switch for allowing the tool to be used both for wrapping and for unwrapping wires, with the reversing switch located in a protected region at the rear of the tool to prevent accidental activation. The same tool housing can also be used for fabricating both battery operated as well as AC operated tools.