摘要:
A scarf nozzle for a jet engine supported within a nacelle. The scarf nozzle is at an aft end of the nacelle. The scarf nozzle includes a first trailing edge portion and a second trailing edge portion. The second trailing edge portion is disposed aft of the first trailing edge portion. The scarf nozzle is configured to allow the nacelle to be integrated closer to a wing without adversely affecting the pressure gradient between the nacelle and the wing. The scarf nozzle allows a portion of an exhaust plume exiting the aft end of the nacelle to interact more favorably with an airflow along one or more surfaces adjacent the nacelle, thus delaying the onset of adverse pressure gradients and the formation of shock waves between the nacelle and the adjacent surfaces and between the adjacent surfaces and the exhaust plume.
摘要:
A variable cycle propulsion system for a supersonic airplane comprises at least one engine capable of generating thrust for flight at supersonic speeds together with at least one auxiliary propulsion assembly that is separate from the engine and that is capable of generating additional thrust for takeoff, landing, and flight at subsonic speeds. The auxiliary propulsion assembly does not have a gas generator and means are provided for transmitting a fraction of the mechanical power produced by the engine to the auxiliary propulsion assembly in order to enable it to generate the additional thrust for takeoff, landing, and subsonic cruising flight. Means are provided for decoupling the mechanical transmission means for supersonic cruising flight.
摘要:
A system for supporting an auxiliary power unit in an aircraft tailcone wherein the auxiliary power unit is supported by a focalized suspension system supporting the power unit, the focalized suspension system having a plurality of support means each having a line of action, the lines of action intersecting at the focal point. The support system simplifies removal and installation of the auxiliary power unit from and into the aircraft's tailcone.
摘要:
An access platform comprising a series of stackable polyurethane foam block assemblies that when properly secured to each other creates a set of steps and handholds similar to a ladder. At the top of the platform a maintenance person can stand on a nonskid surface and perform the work needed at any required height. The ladder is radially curved to fit between the thrust reverser sleeve (deployed) and the inner fan duct wall. This radial diameter between the GE, Rolls Royce and Pratt Whitney engines varies within inches. The main access blocks of the access platform can be used on all three engines by using different foam wedges and wall blocks to secure the assembly tightly in place. Over 70% of the blocks are useable on all three engine types, thus reducing the number of overall parts required. Importantly, a special use tool is provided comprising interlocking foam block modules that are built up in place, are shaped to conform to the engine's inner nacelle wall and are used as a support scaffold for maintenance personnel.
摘要:
The present invention relates to a suspension of the turbo fan engine to an aircraft pylon, including a fitting (12) arranged to be attached to a pylon, a lever (15) fastened in its central portion (150) to the fitting via a linking means with a pivot pin (150P), and two thrust rods (20, 22) each connected by an end to the lever and including at the other end of the fastening means to the engine. It is characterised in that said linking means is composed on said central portion (150) of the lever, of two parallel branches (151, 152) apart from one another, and on the fitting, of a central fastening tab (133), whereas the fastening tab and both branches are held together by dint of said pivot pin (150P). The invention enables to simplify the manufacture of the parts forming the suspension, thereby improving structural resistance.
摘要:
The present invention relates to a rear attachment suspension or device of a turbo engine (1) to an aircraft pylon including an upper brace (12) fitted with pylon fastening means, whereon are hinged by second ball joint connections (163, 183), three rocker bars transversal to the longitudinal axis of the engine, a first (16) and a second (18) rocker bars on both sides of the axis of the engine and a third rocker bar (17) between both of them, the rocker bars being themselves linked with the engine by first ball joint connections (161, 181). The suspension is characterised in that the first (16) and second (18) rocker bars each include a third (167, 187) stand-by link and in that the upper brace (12) is formed of a beam (120) fixed rigidly to the pylon. The solution of the invention enables the realisation of identical rocker bars and to ensure interchangeability thereof, thereby reducing the risks of error during assembly.
摘要:
An aircraft (10) comprises a wing (12) having an upper surface (16) and a lower surface (18) and at least one turbofan gas turbine engine (20) mounted on the wing (12). The axis (34) of the at least one turbofan gas turbine engine (20) is arranged substantially in the plane (14) of the wing (12) of the aircraft (10). The at least one turbofan gas turbine engine (10) has an intake, the intake comprising a hollow member (44) rotatably mounted coaxially with the at least one turbofan gas turbine engine (20) such that in use the hollow member (44) is rotatable between a first position, a low-speed condition, in which air flowing over and/or above the upper surface (16) of the wing (12) flows into the intake of the at least one turbofan gas turbine engine (20) and a second position, a high-speed condition, in which air flowing along and/or below the lower surface (18) of the wing (12) flows into the intake of the at least one turbofan gas turbine engine (20).
摘要:
A strut (10) for hooking an engine (16) under a wing body assembly (12) of an aircraft comprises a rigid structure as well as a mechanism for hooking this structure under the wing body assembly. This mechanism comprises a front fastener (22), a rear fastener (24) and a structure (26) for absorbing thrust. To install an engine (16) of greater diameter under the wing body assembly (12) of an existing plane, the rear part (20b) of the strut (10) is given a width which increases as it progresses to the rear. Furthermore, the rear fastener (24) comprises two braces which are fixed on both sides of the rigid structure and two shackles which connect each of the braces to an additional transverse rib integrated into the wing body assembly.
摘要:
Aircraft engine nacelles and methods for structurally attaching them to aircraft structures, such as aircraft wings. In one embodiment, an aircraft engine nacelle is attached to a wing between a trailing edge region of the wing and an aft deck region of the wing. In one aspect of this embodiment, the engine nacelle includes a forward portion having first and second structural attach points offset from each other in a first direction at least generally perpendicular to a central axis of the engine nacelle. The first and second structural attach points can be configured to fixedly attach the engine nacelle to the wing at least proximate to the trailing edge region. In another aspect of this embodiment, the engine nacelle includes a side portion having at least a third structural attach point offset from the first and second structural attach points in a second direction at least generally parallel to the central axis. The third structural attach point can be configured to fixedly attach the engine nacelle to the wing at least proximate to the aft deck region.
摘要:
Electrically powered aircraft having fuel cells as at least a partial source of electrical energy. In many instances the electrical energy powers an electric motor used to propel the aircraft. In some instances, the electric output from the fuel cell would be augmented by power from special high power nullsurgenull batteries for critical takeoff and climbing, where the maximum electric power is required. In preferred embodiments, such fuel cell powered aircraft will supply oxygen to the fuel cell either from a container of oxygen carried on board the aircraft, or from a ram scoop which directs air through which the aircraft is moving to the fuel cell.