摘要:
A thrust reverser system for jet aircraft comprising an exhaust tailpipe mounted to the turbine engine aft turbine flange and two clamshell doors, actuators and a locking system to prevent inadvertent deployment of the clamshell doors in-flight. Two improved design clamshell doors configurations, either one or a combination of both, mounted on either side of the top and bottom of the exhaust tailpipe, fitted with two patented design actuators mounted one on each side of the external sides of the tailpipe between the clamshell doors and the tailpipe, possibly in a depression in the tailpipe called blister, assuming them to be hydraulic actuators for discussion purposes. The actuators drive the clamshell doors using improved floating linkages loosely pivoted to the exterior of the exhaust tailpipe. The actuators are connected to the doors through mechanical linkages, to deploy the doors aft of the tailpipe exhaust area during deceleration after landing, diverting the exhaust gases forward to slow down the aircraft, and the actuators also drive two movable fairings during thrust reverser operation to enclose the reversed exhaust flow forward to prevent its impingement on the skin of the aircraft and provide a ram inlet area with the sides of the clamshell doors allowing ram air from the surrounding free stream to be scooped through the gap between the movable fairing and clamshell doors thereby provide cooling of the door surface in contact with the exhaust gases and mix with the engine exhaust gases in reverse thrust mode thereby augmenting reverse thrust mass flow and energy. The exhaust tailpipe can have a circular or any geometric exhaust section or in other configuration can be fitted in with a flow mixer with the surrounding ambient air to reduce shear noise resulting from the high velocity exhaust gases for noise attenuation. The flow mixer can also be perforated to allow for suction of ambient air by the lower static pressure engine exhaust gases to reduce shear noise and increase mixing and thrust. Two fixed fairings, above and below the tailpipe at the exit section can have perforations and also perforations on the movable fairings to educt surrounding air also to reduce shear noise between surrounding air and the engine exhaust flow during forward thrust based on SAE Aerospace Information Report AIR-1191 and method of calculation. Other configurations for the trailing edges of the fixed and movable fairings can have wavy contour lines to increase the contact area between the engine exhaust gases and the surrounding air to reduce shear noise as well. Fixed circular shape or rolling bodies, depicted as wheels for discussion purpose, but they can be of any shape, mounted on the top and bottom of the tailpipe at the forward end which get lodged in the upper and lower forward frames of the clamshell doors in the stow position to provide one of the mechanical locking systems. A second mechanical locking system is a high strength compression steel spring which is part of the linkages used to deploy and stow the clamshell doors, which at the end of the stow stroke is buckled to prevent the clamshell doors deploy mechanism from moving, thereby keeping the doors securely stowed. A third locking mechanism consisting of electrically actuated locks which engage the clamshell doors in the stow position and lock the movable fairings to prevent them from being entrained by the free stream during flight.
摘要:
A thrust reverser system for jet aircraft comprising an exhaust tailpipe mounted to the turbine engine aft turbine flange, clamshell doors, actuators and locking systems to prevent inadvertent deployment of the clamshell doors. Improved design clamshell doors shrouding the tailpipe fitted with two patented design actuators, enclosed between the doors and the tailpipe. The actuators throw the doors behind the tailpipe exhaust exit area using improved linkages attached to the tailpipe and the doors, to reverse the exhaust gases forward. The tailpipe can be of circular or any geometric shape. Reverse Exhaust gases are enclosed between the doors and two movable fairings. Several sound attenuation configurations provisions for the tailpipe, the fixed and movable fairings. Three independent locking systems provisions to prevent inadvertent deployment of the doors.
摘要:
An acoustic panel is provided that includes at least one cellular core arranged between at least an internal skin and an external skin, wherein the external skin incorporates at least one fastener able to collaborate in a disconnectable fashion with a complementary fastener associated with a structure to which it is to be attached.
摘要:
A noise reduction system includes: a microjet ring (16) provided at an exhaust side peripheral edge of a main nozzle of a jet engine, and has a plurality of injection pipes (26) formed in a circumferential direction thereof at regular intervals; and a supply path configured to take part of compressed air in from a flow path in an upstream side of a combustor in the jet engine, and to guide the part of compressed air to the plurality of injection pipes (26), wherein the plurality of injection pipes (26) is configured to inject the part of compressed air to a jet flow.
摘要:
An engine exhaust nozzle comprises a plurality of CMC staves attached to one or more support rings arranged axially. The support rings provide a circumferential load path between the staves and for attaching the exhaust nozzle to the metallic engine components. The staves are fixed to the support rings with a spacing intended to accommodate for relative movement due to the difference in CTE for the CMC and metallic components and due to thermal gradients through the wall thickness. The resulting apparatus is lightweight, relieves the nozzle of thermal stresses, and is easier to manufacture and repair.
摘要:
A propulsion system for a craft includes two jet engines which are arranged parallel to one another. The system further includes an inlet and/or outlet device for each jet engine. Each device includes a duct for carrying a gas, the duct having a gas inlet and a gas outlet. The gas outlet is arranged offset in relation to the gas inlet transversely to the longitudinal direction of the duct, so that the jet engine is hidden from external view.
摘要:
A system for jet engine noise control of a jet engine having a main jet stream exiting an exhaust nozzle and flowing along a jet axis includes a thermal acoustic shield directed at a non-zero angle relative to the jet axis. The thermal acoustic shield may be configurable about the main jet stream. The system may further include at least a fluidic chevron injected at a location relative to the nozzle exit for enhancing mixing in the main jet stream and creating a non-circular jet stream.
摘要:
An acoustic liner 20 includes a remote panel 26, a proximate panel 28 transversely spaced from the remote panel and a resonator chamber 34b residing between the panels. Perforations 38 penetrate the proximate panel in registration with the resonator chamber 34b. A neck 56 with an inlet 58 recessed from the proximate panel establishes communication between the chamber and a fluid stream G flowing past the proximate panel. A bypass coolant passage 66 guides coolant through the perforations without guiding it through the resonator chamber.
摘要:
A scarf nozzle for a jet engine supported within a nacelle. The scarf nozzle is at an aft end of the nacelle. The scarf nozzle includes a first trailing edge portion and a second trailing edge portion. The second trailing edge portion is disposed aft of the first trailing edge portion. The scarf nozzle is configured to allow the nacelle to be integrated closer to a wing without adversely affecting the pressure gradient between the nacelle and the wing. The scarf nozzle allows a portion of an exhaust plume exiting the aft end of the nacelle to interact more favorably with an airflow along one or more surfaces adjacent the nacelle, thus delaying the onset of adverse pressure gradients and the formation of shock waves between the nacelle and the adjacent surfaces and between the adjacent surfaces and the exhaust plume.
摘要:
A fluidic diverter valve includes valve element freely disposed within a valve bore. The valve bore has a cross sectional area that varies. As a result, the clearance between the valve element and an inner surface of the valve bore also varies. This variation in cross sectional area, and thus clearance, is such that a force of sufficient magnitude to move the valve element from a seated position is initially applied to the valve element, but the force on the valve element is reduced once it is moved from the seated position. Thus, the impact force upon attaining another seated position is reduced.