Abstract:
A tire protecting apparatus mounted on a vehicle provided with a wheel having a tire on a wheel filled with pressurized air, which protects the tire from abnormally deforming while the vehicle is running, is provided with a tire temperature sensor that detects a temperature of the tire, and a determinator that determines whether it is necessary to cool the tire based on the tire temperature detected by the tire temperature sensor when there is a possibility that abnormal tire deformation will occur. Accordingly, the invention protects the tire from abnormally deforming by considering the temperature of the tire while the vehicle is running.
Abstract:
Device for tubeless tyre bead engagement and inflation, generally for tyre removal machines (1) having a unit for supporting and locking a wheel (wheel rimnulltyre) (5-15) in a bedded position, comprises a movable implement to be associated with the structure of the tyre removal machine, and generally shaped as a handlebar the handles (9) of which are lowerly provided with at least one compressed air delivery nozzle (11), said handlebar being able to move between a rest position in which it is spaced from said bedded wheel, and a working position in which said nozzles, retained thereat by the operator, extend beyond the upper bead retention flange (55) of the wheel rim (5) to blow air below it at the command of said operator.
Abstract:
A tire and/or wheel testing machine and method for operating the same allows testing without removal of a drive motor that is only used during some of the tests. One aspect is a testing machine wherein the drive motor is supported by a support member so that the motor axis intersects with a spindle plane having the spindle axis. Another aspect includes a coupling assembly allowing selective decoupling of the motor shaft with the spindle hub.
Abstract:
A tire pressure monitoring system having a monitoring unit that receives the output of a transmitted pressure sensor through a receiving antenna, and compares the output with a predetermined value to determine whether the tire pressure is proper, and informs a result of the determination to an operator by an indicator or alarm section connected to an onboard battery through an ignition switch. In the system, an operating switch is installed in a vehicle compartment to be operable by the operator for supplying the operating power to the indicator by connecting it to the battery, while bypassing the ignition switch. Alternatively, a portable terminal device to be carried by the operator is connected to the monitoring unit in such a manner that the monitoring unit transmits the result of the determination to the portable terminal device to inform the result of the determination to the operator by a second indicator provided at the portable terminal device. With this, the operator's work is facilitated when pumping up the tire with insufficient pressure.
Abstract:
Tyre condition sensing apparatus carried by a vehicle has a relay module (4) in the vicinity of a vehicle wheel. The relay module (4) detects a tyre condition of a tyre in the vehicle such as tyre pressure. Tyre condition indicating apparatus carried by the vehicle has a display module (5) at the vehicle dashboard, and a sounder module (50) arranged in the vicinity of the wheel. The sounder module (50) gives audio indications audible at the wheel corresponding to visual or audio indications given at the dashboard by the display module (5). The indications are permanently off for a normal condition, permanently on for an above-normal condition and intermittently on for a below-normal condition.
Abstract:
For use in a tire pressure monitoring system, a frequency modulation (FM) radio frequency (RF) oscillator includes a modulator and a generator. The modulator may be configured to generate a modulation signal in response to a data input signal. The generator may be configured to generate an FM output signal having a carrier frequency modulated by the modulation signal, wherein the generator includes a frequency determining device.
Abstract:
A system and method for remote monitoring of vehicle tire pressure include monitors in each tire to transmit signals representative of tire pressure and receive control signals for use in regulating transmission of the tire pressure signals. A vehicle receiver receives the tire pressure signals and passive entry signals transmitted by a remote passive entry device. A vehicle transmitter transmits the control signals for use in regulating transmission of the tire pressure signals. A controller on-board the vehicle in communication with the receiver and transmitter conveys tire pressure information to a vehicle occupant based on the tire pressure signals, determines whether the vehicle is occupied based on the passive entry signal, and generates a control signal operative to halt transmission of the tire pressure signals when the vehicle is unoccupied.
Abstract:
A method for monitoring the instantaneous behavior of a tire includes the steps of acquiring and storing at least one basic reference curve representing variation of a displacement of at least one specified point of the tire in at least one of three spatial directions as a function of a spatial position of the at least one specified point during at least one portion of a revolution of the tire, continuously acquiring first signals representing the spatial position of the at least one specified point, deriving from the spatial position signals of the at least one specified point at least one cyclic curve of current operating displacement in at least one spatial direction, continuously comparing the at least one cyclic curve of current operating displacement with the at least one basic reference curve, and emitting a second signal depending on results of the comparison. A related device is also disclosed.
Abstract:
A tire pressure monitoring system for monitoring pressure of tires mounted on a vehicle by comparing a detected tire pressure, detected by a pressure sensor installed at each of the tires, with a predetermined value to determine whether the detected tire pressure is proper. The system includes a first temperature sensor that detects internal temperature of the tire, a second temperature sensor that detects ambient temperature at a place where the vehicle locates, and the predetermined value is corrected based on a difference between the detected tire internal temperature and ambient temperature, when the tire pressure is to be adjusted. With this, even if the tire pressure is adjusted when the tire internal temperature is higher than the ambient temperature, the tire pressure can be prevented from falling below the proper pressure when the internal temperature falls to the ambient temperature.
Abstract:
The invention relates to methods for improving vehicle steering performance and robustness of that performance through control of non-uniformities in the vehicle's tires, wheels and tire/wheel assemblies as a way to overcome the tendency of the steering systems in certain vehicle types to undergo nullsteering performance loss.null While minimizing lateral force variations (e.g., couple imbalance), a controlled amount of radial and/or tangential force variation is induced in one or more tire/wheel assemblies by means of mass non-uniformity, dimensional non-uniformity, and/or stiffness non-uniformity. For stiffness non-uniformity, the preferred method comprises imparting a controlled amount of stiffness non-uniformity to the tire in at least one of the tire/wheel assemblies, followed by statically and dynamically balancing all of the vehicle's tire/wheel assemblies. The stiffness non-uniformity comprises one or more sectors of the tire having a different (less or preferably more) stiffness than the remainder of the tire. All tire non-uniformities imparted according to the invention are preferably distributed meridionally symmetrically about the equatorial plane of the tire, so as to induce tangential and/or radial force variations but not lateral force variations. Beneficial tangential and/or radial force variations will result from the operation of such a tire, even if the tire/wheel assembly is balanced by weights added to the wheel. The stiffness non-uniformity is preferably imparted in the tire by means of one or more heavy splices, and/or extra pieces of fabric applied to the carcass or tread, and/or sectors of tire components having different stiffness. Synergistic beneficial effects result from combinations of the various forms of beneficial mass, stiffness, and dimensional non-uniformity.