摘要:
Hydroelectric power generation systems and methods of using such systems are provided. A power generation system includes a reservoir that is at least partially defined by a plurality of precast segments. At least a subset of the precast segments are interconnected via complementary coupling elements. The reservoir is elevated with respect to a fluid supply. The system further includes a flow path providing fluid communication between the reservoir and the fluid supply, a power generation module configured to pump fluid from the fluid supply and into the reservoir via the flow path, and a power conversion module configured to convert kinetic energy of fluid released from the reservoir and travelling through the flow path into electric energy.
摘要:
In a penstock internal maintenance system, the penstock includes an inclined portion between upper and lower ends, the upper end arranged in an edifice including a water collecting chamber and a gate bearing structure allowing a gate to close the penstock, the gate bearing structure adjacent the water collecting chamber forming a vertical pit. The system includes a set of units assembled in an assembled configuration and separated in a dismounted configuration, the units including an anchor unit, a launching unit and a penstock inspection platform unit, the units in the dismounted configuration being enter the penstock through the gate bearing structure adjacent the water collecting chamber, the units are assembled when located in the penstock, the anchor unit slidingly received and retained in the gate bearing structure, the anchor unit having two lateral edges being guided and retained in two vertical lateral grooves of the gate bearing structure.
摘要:
A hydrodynamic installation includes an upper water tank, a lower water tank, a water way system which has a plurality of partial water ways and which connects the upper water tank to the lower water tank. A hydraulic machine is arranged in the water way system, a water protection is arranged in a partial water way, and an electric drive provided for actuating the water protection. The electric drive is constructed in such a manner that it also ensures safe closing of the water protection in the event of a power failure without an emergency power supply being provided to this end.
摘要:
The invention relates to a method for controlling a water sluice gate drive for a water sluice gate, in particular for a roller sluice gate, preferably in a hydroelectric power plant, wherein the drive has an electric machine, in particular has an asynchronous machine, in particular an asynchronous motor/generator. According to the invention, it is provided that the electric machine, in particular an asynchronous machine, has a fan brake, wherein the method comprises the steps of: disengagement of the fan brake in the case that an insufficient power supply is indicated, self-actuated operation of the electric machine, in particular an asynchronous machine, wherein the electric machine, in particular an asynchronous machine, is operated in generative island operation, in which a rotating field is generated in a self-actuating manner.
摘要:
A control station, a slave station, a control method of the control station, and a control method of the slave station capable of securing an evacuation time and controlling a gate to be closed are provided. A control station of an embodiment is a control station in a gate control system for controlling operations of gates. The gate control system including the control station and slave stations. The control station including: an information acquisitor and a control information transmitter. The information acquisitor acquires emergency information via satellite communication. The control information transmitter simultaneously transmits gate control information for controlling the gates to the slave stations via the satellite communication on the basis of the emergency information.
摘要:
The invention relates to a method for controlling a water sluice gate drive for a water sluice gate, in particular for a roller sluice gate, preferably in a hydroelectric power plant, wherein the drive has an electric machine, in particular has an asynchronous machine, in particular an asynchronous motor/generator. According to the invention, it is provided that the electric machine, in particular an asynchronous machine, has a fan brake, wherein the method comprises the steps of: disengagement of the fan brake in the case that an insufficient power supply is indicated, self-actuated operation of the electric machine, in particular an asynchronous machine, wherein the electric machine, in particular an asynchronous machine, is operated in generative island operation, in which a rotating field is generated in a self-actuating manner.
摘要:
Dams are a useful source of energy. An embodiment of a dam according to the present invention includes precast segments configured to be coupled together to form a dam optionally used to generate energy. An embodiment includes encasing an existing dam structure using interconnected precast segments. An underpinning system may penetrate the existing dam structure and be employed to assist in maintaining position of the dam or segmental components. A further embodiment includes encasing a main energy generation component using interconnected precast segments formed from a composite material including electrically conducting fibers, an electric circuit configured to measure and report the electrical resistance using a transmitter or transceiver to a dam stress/strain monitoring server. The electrical circuit may be powered directly or indirectly by available power supplied by the main energy generation component.
摘要:
A water reservoir system for generating, accumulating, storing, and releasing electrical energy comprises a reservoir wall built in a shallow body of water such as a sea or an ocean with a height exceeding the outside water level by about 10-25 m, thereby defining an interior of the water reservoir. Excess electrical energy from other renewable sources of electricity such as wind, solar power, or supplied by a local power grid is used to operate water pumps to fill the interior of the water reservoir with water during times of peak supply of electricity. Water is drained from the water reservoir to the outside body of water and generates electrical energy by flowing over a plurality of water turbines, thereby generating electricity and supplementing electrical power for the local power grid during times of high demand. Additional interior sources of renewable energy may be used to supplement external sources of electrical power in operating the system of the invention.