摘要:
The invention relates to a method for controlling a water sluice gate drive for a water sluice gate, in particular for a roller sluice gate, preferably in a hydroelectric power plant, wherein the drive has an electric machine, in particular has an asynchronous machine, in particular an asynchronous motor/generator. According to the invention, it is provided that the electric machine, in particular an asynchronous machine, has a fan brake, wherein the method comprises the steps of: disengagement of the fan brake in the case that an insufficient power supply is indicated, self-actuated operation of the electric machine, in particular an asynchronous machine, wherein the electric machine, in particular an asynchronous machine, is operated in generative island operation, in which a rotating field is generated in a self-actuating manner.
摘要:
This system for supplying electrical power to a load includes an asynchronous generator including a cage rotor intended to be driven by motor means and a rectifier adapted to rectify the voltage delivered by the generator. The rectifier is a rectifier employing unidirectional electronic components. The power supply system further includes a reactive power source for magnetizing the asynchronous generator.
摘要:
A power supply circuit for supplying electrical energy in an aircraft, the circuit including a power supply generator configured to be driven in rotation by the engine of the aircraft to power electrical equipment of the aircraft engine. The power supply generator includes an asynchronous machine connected to an excitation device. The asynchronous machine includes a rotor configured to be driven in rotation by the engine and a stator connected to the electrical equipment. The excitation device is configured to cause a reactive current of flow in the stator.
摘要:
Disclosed is a motor vehicle comprising a generator and at least one capacitor in which recuperation power generated in a thrust phase by the generator that can be operated as a recuperator can be stored. The excitation current (IErr) that limits the power of the generator (3) can be varied in the excitation circuit of the generator (3) in accordance with at least one vehicle-specific operational parameter arid/or the actual charge of the capacitor (10).
摘要:
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
摘要:
The invention is an aircraft power generation system which utilizes an induction-machine (G.sub.1) as a primary generator of variable-voltage/variable-frequency power. The induction-machine (G.sub.1) is directly driven by the engine (14) and is excited by an excitation-generator (G.sub.2) such that the induction-machine (G.sub.1) operates in a generating mode. A variable-speed drive (20), shown as a toroidal drive (30), controls the excitation frequency of the induction-machine (G.sub.1) such that the negative slip-frequency is controlled as a function of the input speeds (N.sub.1), (N.sub.2) and the electric load on the generator. Control of the toroidal drive (30) and thus speed (N.sub.2) is accomplished by a negative-slip control circuit which includes a drive control logic circuit (36), a proportional actuator (34), a control-start panel (48), and a steering mechanism (32).In another aspect of the invention, the induction-machine (G.sub.1) operates in a start-mode to start the engine (14). In this mode of operation, after engine starting is initiated from control-start panel (48), a start-logic circuit (52) establishes a programmed voltage/frequency output from a start-power electronics source (46). The voltage/frequency output, programmed from a low value, against time, up to a predetermined high value is applied to the induction-machine (G.sub.1) field to bring the engine (14) up to speed.
摘要:
The invention relates to a device for phase compensation and excitation of a multiphase asynchronous machine, especially one to be driven as a generator and to be operated at low speed. Each winding (1 to 3) in the machine is connected in series or in parallel with a capacitive element consisting of a bank of capacitors (4 to 6) having at least one pair of series connected electrolytic capacitors (7, 8), having in each pair equal terminals interconnected.
摘要:
A method and apparatus for operating a generator control unit having power bridge, further including having an input and at least one output, wherein the input is operably coupled with a generator power output, and a controller communicatively coupled with the power bridge and configured to operate the power bridge.
摘要:
A wind turbine and generator arrangement comprises a turbine that drives a self-excited induction generator via a shaft and mechanical gearbox. The induction generator includes an electrical circuit that includes a variable capacitance and a variable resistance. The variable capacitance may be constituted by a fixed capacitor and a triac under the control of a controller, or by a bank of capacitors switched by a relay under control of the controller. The variable resistance includes a triac controlled resistor or a bank of relay-switched resistors which constitute heating elements for heating domestic hot water. In use the generator frequency and voltage are allowed to ‘float’ while the optimal generator power output is maintained, but adjusting the impedance of the electrical circuit as the wind speed varies.
摘要:
The invention relates to a method to control power output of a doubly-fed induction machine to a grid including the steps of measuring grid voltage and grid current in a three phase coordinate system, transforming grid voltage and grid current into a stator frame coordinate system, decomposing the grid voltage and grid current in the stator frame coordinate system in a positive sequence system and in a negative sequence system, calculating active and reactive power in the positive and negative sequence system, and controlling active and reactive power in the positive and negative sequence system. The object to provide a method to control power output of a doubly-fed induction machine which provides good dynamics and is able to allow fault-ride-through operations when unbalanced grid voltages occurs is solved in that active and reactive power in the positive and negative sequence system are used as independent state variables in a state controller, whereas the state controller generates manipulated values in the positive and negative sequence system separately which are subjected as manipulated state vectors to a state feedback in a stator frame coordinate system without further control loops before the manipulated vector resulting from state feedback is used to set the rotor voltage.