Abstract:
A system includes a compressor that compresses a fluid. The system also includes an internal combustion engine including a thermomechanical cycle. The thermomechanical cycle converts excess heat from the internal combustion engine to mechanical power to drive the compressor.
Abstract:
A waste heat utilization device for a vehicle, said waste heat utilization device being provided with a Rankine cycle system and comprising: a motor-generator that is connected to an expander and is structured so as to be able to rotate integrally with the expander: a clutch device that is provided between the expander and a power transmission system of the vehicle; and a clutch control unit that is structured so as to control switching of the clutch device between a connected state and a disconnected state.
Abstract:
A cooling system for a combustion engine and a WHR-system in a vehicle (1) includes a first line (23) directing coolant at a first temperature (T1) to a condenser (18) of the WHR system, a second line (24) directing coolant at a second temperature (T2) to the condenser (18), a valve arrangement (25, 26, 29) by which the flow rate of the coolant in at least one of the lines (23, 24) is adjustable and a control unit (20) configured to control the valve arrangement (25, 26, 29) such that the coolant directed to the condenser (18) from the lines (23, 24) has a temperature and a flow rate which results in a cooling of the working medium in the condenser (18) to a predetermined condensation temperature/pressure at the actual operating condition.
Abstract:
A transmission system selectively coupled to an engine crankshaft of an internal combustion engine arranged on a vehicle includes a waste heat recovery (WHR) system, a brake assembly and a phase-change thermal heat storage system. The WHR system selectively circulates a WHR fluid in the transmission system. The brake assembly selectively couples a transmission output shaft to a drive axle. The brake assembly is configured to operate in a braking mode that retards relative rotation between the transmission output shaft and the drive axle while generating heat. The heat storage system includes a housing defining at least one cavity and a fluid transfer manifold. A phase-change material is disposed in the cavity that is configured to change phase during the braking mode. The WHR system circulates the WHR fluid through the fluid transfer manifold collecting braking heat to be used at a later time in the form of driveline power.
Abstract:
A power system includes: an internal combustion engine; a motor to perform power running; a generator to perform power generating operation and the power running; a power transmission mechanism via which the internal combustion engine, the motor, and the generator are connected to drive a driven load by at least one of the internal combustion engine, the motor, and the generator and to perform power transmission between the internal combustion engine and the generator; and a processor configured to perform a first control process to control the motor to perform the power running so that the driven load is driven only by the motor and to perform a second control process to control both the motor and the generator to perform the power running so that the driven load is driven by both of the motor and the generator.
Abstract:
A transmission system selectively coupled to an engine crankshaft of an internal combustion engine arranged on a vehicle includes a waste heat recovery (WHR) system, a brake assembly and a phase-change thermal heat storage system. The WHR system selectively circulates a WHR fluid in the transmission system. The brake assembly selectively couples a transmission output shaft to a drive axle. The brake assembly is configured to operate in a braking mode that retards relative rotation between the transmission output shaft and the drive axle while generating heat. The heat storage system includes a housing defining at least one cavity and a fluid transfer manifold. A phase-change material is disposed in the cavity that is configured to change phase during the braking mode. The WHR system circulates the WHR fluid through the fluid transfer manifold collecting braking heat to be used at a later time in the form of driveline power.
Abstract:
A method for retrofitting a fossil-fueled power station is provided. The power station includes a multi-housing stream turbine with a carbon dioxide separation device. As per the method, a suction capability of the steam turbine is adapted for an operation of the carbon dioxide separation device to a process steam to be removed. The carbon dioxide separation device is connected via a process steam line to an intermediate superheating line. Further, an auxiliary condenser is connected to the carbon dioxide separation device. On failure or deliberate switching off of the carbon dioxide separation device surplus process steam is condensed in the auxiliary condenser.
Abstract:
A waste heat recovery system is provided for an internal combustion engine having a piston, a cylinder and an intake manifold, significantly improving gas mileage efficiency without reliance on alternative fuels. The system includes a heat loop having a heat transfer fluid, a compressor in fluid communication with the intake manifold to supply compressed air thereto, a Stirling engine operated and optimized via thermal communication with the heat loop, and operatively coupled to the compressor. The system includes a chiller in thermal communication with the heat loop, and with the intake manifold to cool the compressed air communicate to the cylinder. The system may include additional Stirling engines operating other devices, or being operated by a device, such as a propeller. A vehicle can incorporate the system and route fluid to and from a radiator. The system can be used in both portable and stationary applications.
Abstract:
In a retrofit system for hot solids combustion and gasification, a chemical looping system includes an endothermic reducer reactor 12 having at least one materials inlet 22 for introducing carbonaceous fuel and CaCO3 therein and a CaS/gas outlet 26. A first CaS inlet 40 and a first CaSO4 inlet 64 are also defined by the reducer reactor 12. An oxidizer reactor 14 is provided and includes an air inlet 68, a CaSO4/gas outlet 46, a second CaS inlet 44, and a second CaSO4 inlet 66. A first separator 30 is in fluid communication with the CaS/gas outlet 26 and includes a product gas and a CaS/gas outlet 32 and 34 from which CaS is introduced into said first and second CaS inlets. A second separator 50 is in fluid communication with the CaSO4/gas outlet 46 and has an outlet 52 for discharging gas therefrom, and a CaSO4 outlet from which CaSO4 is introduced into the first and second CaSO4 inlets 62, 66. The chemical looping system is in fluid communication with at least a portion of an existing power generation system.
Abstract:
An electric power generating system employing a gas turbine (1) and a steam turbine (5) and a gasifier (9) supplying fuel-gas to the gas turbine (1) and to a steam generating fluidized bed combustor (37), the latter providing steam for the steam turbine (5). An auxiliary steam turbine (21), driving an electric generator (22), is also supplied by the circulating fluidized bed combustor steam generator (37). Since the gasifier (9) cannot be reversibly turned down easily, on a fall in load on the main steam turbine (5), the excess steam generated is diverted to the auxiliary steam generator (21) and the gasifier (9) kept running efficiently.