Abstract:
In a rectilinear motion driving apparatus, a shaft (6) is fitted into a cylindrical body (4) in a coaxial state, and a plurality of cylindrical coil rollers (3a) is interposed between the cylindrical body and the shaft by press fit so as to roll at a predetermined inclined angle to the axial direction. Further, these cylindrical coil rollers (3a) are contacted with an outer peripheral surface of the shaft and an inner peripheral surface of the cylindrical body with a pressure contact force, and the cylindrical body or the shaft is rotated so that the shaft or the cylindrical body makes a rectilinear motion toward an axial direction. A pressure contact force of both inner and outer surfaces of the cylindrical coil roller (3a) to the cylindrical body (4) and the shaft (6) is set higher than an intermediate portion of the cylindrical body (4) in the vicinity of the end portion thereof, or is set lower than the intermediate portion of the cylindrical body (4) in the vicinity of the end portion thereof. By doing so, when the cylindrical coil roller (3a) approaches both ends of the cylindrical body, a pressure contact force increases or decreases; therefore, a slip is prevented from being accumulated. In other words, in the case where the stop position of the cylindrical coil roller (3a) is too biased to one end side, it slips to a reverse direction, and thereby, the axial stop position of the cylindrical coil roller (3a) can be kept within an allowable range.
Abstract:
A hydraulic power assist rack and pinion steering system (12) for a vehicle includes a housing (14) in which a rack (10) is movable along an axis (16) to effect turning movement of steerable wheels of the vehicle. The rack (10) comprises a first rack part (50) having an elongate body portion (56) and an end portion formed as a first piston portion (58), and a second rack (80) part having an elongate body portion (86) and an end portion formed as a second piston portion (88). The first piston portion (58) of the first rack part (50) is joined to the second piston portion (88) of the second rack part (80) to form a piston (22). The body portion (56) of the first rack part (50) extends axially away from the piston (22) in a first direction (110). The body portion (86) of the second rack part (80) extends axially away from the piston (22) in a second direction (112) opposite the first direction (110).
Abstract:
A high frequency mechanical scanning assembly which is capable of one or two dimensional scanning comprises an actuator assembly, a base assembly, a coil assembly and a sensor assembly. The actuator assembly includes an upper resonant system and a lower flexure. The upper resonant system has an upper mass, a reaction mass, and an upper flexure. The top surface of the upper mass is a mirrored surface which can be used to reflect a light beam. The actuator assembly is connected to the base assembly via the lower flexure. The lower flexure connects to the reaction mass at a point close to the center of mass of the reaction mass. Movement of the upper resonant system is caused by an excitation system which includes magnets securely mounted to at least the lower mass and the coil assembly which provides driving torques to the magnets. The lower flexure is less stiff than the upper flexure. The upper flexure acts as a spring which stores and releases kinetic energy as the upper mass and reaction mass move between deflected and undeflected positions. In operation, the upper resonant system resonates about an upper translational node and a lower translational node, with the upper mass deflecting in an opposite direction as the reaction mass. The opposite deflections of the upper and reaction masses, and the location and stiffness of the lower flexure result in very little torque being transmitted to the base assembly.
Abstract:
A quick-action locking device for an electric power tool including a locking spindle (4) axially displaceable in the hollow spindle (2) of the electrical power tool between a working tool locking position and a working tool exchange position, and a locking lever (6) provided at the end of the locking spindle remote from the working tool and having a slider cooperating with the locking spindle (4) for displacing the same, upon a pivotal movement of the locking lever (6), to its tool exchange position, with the slider (8) having a contact region engageable with a contact surface provided at the end of the locking spindle (4) remote from the working tool (3), and with the contact surface of the locking spindle (4) having an extent, in a pivotal direction of the locking lever (6), corresponding to at least the radial distance (a) of the contact region from the pivot axis (9) of the lever multiplied, in the locking position of the locking lever (6), by a sin (null) of an angle formed by a line, which defines the radial distance (a), with a longitudinal axis of the locking spindle (4).