Abstract:
A rotary drive mechanism for use with a timer/sequence switch in an appliance is presented. The mechanism converts linear motion from a cam tracker following a programmed cam track to rotary motion to drive a vent damper in an appliance. The rotary motion output is derived as a multiple of the input linear motion through a gear set. This input linear motion is translated to rotary motion imparted to a tracking rod, which is coupled through the gear set to an output actuating rod. Tracking by a tracking lobe is accommodated by a spring bias force applied though a bias lobe that counteracts the force applied by the cam track. Alternatively, tracking by a tracker is accommodated by a spring bias force applied through a torque arm of the tracking rod that also counteracts the force applied by the cam track.
Abstract:
A booster actuator 10 may be positioned between the solenoid 12 and a valve 14, and increases the energy output from the solenoid to activate the valve. The booster actuator 10 may include a force input member 28 and a force output member 30 each linearly movable with respect to a body 20 from an initial position to an activated position. A coil spring 46 biases the input member to the initial input position, while a plurality of disk springs 48 bias the output member 30 to the activated output position. A plurality of linking members 32 each pivotable with respect to the body normally retain the force output member in the initial position, but upon movement of the input member to the activated position release the force output member in response to the disk springs.
Abstract:
A high frequency mechanical scanning assembly which is capable of one or two dimensional scanning comprises an actuator assembly, a base assembly, a coil assembly and a sensor assembly. The actuator assembly includes an upper resonant system and a lower flexure. The upper resonant system has an upper mass, a reaction mass, and an upper flexure. The top surface of the upper mass is a mirrored surface which can be used to reflect a light beam. The actuator assembly is connected to the base assembly via the lower flexure. The lower flexure connects to the reaction mass at a point close to the center of mass of the reaction mass. Movement of the upper resonant system is caused by an excitation system which includes magnets securely mounted to at least the lower mass and the coil assembly which provides driving torques to the magnets. The lower flexure is less stiff than the upper flexure. The upper flexure acts as a spring which stores and releases kinetic energy as the upper mass and reaction mass move between deflected and undeflected positions. In operation, the upper resonant system resonates about an upper translational node and a lower translational node, with the upper mass deflecting in an opposite direction as the reaction mass. The opposite deflections of the upper and reaction masses, and the location and stiffness of the lower flexure result in very little torque being transmitted to the base assembly.
Abstract:
A quick-action locking device for an electric power tool including a locking spindle (4) axially displaceable in the hollow spindle (2) of the electrical power tool between a working tool locking position and a working tool exchange position, and a locking lever (6) provided at the end of the locking spindle remote from the working tool and having a slider cooperating with the locking spindle (4) for displacing the same, upon a pivotal movement of the locking lever (6), to its tool exchange position, with the slider (8) having a contact region engageable with a contact surface provided at the end of the locking spindle (4) remote from the working tool (3), and with the contact surface of the locking spindle (4) having an extent, in a pivotal direction of the locking lever (6), corresponding to at least the radial distance (a) of the contact region from the pivot axis (9) of the lever multiplied, in the locking position of the locking lever (6), by a sin (null) of an angle formed by a line, which defines the radial distance (a), with a longitudinal axis of the locking spindle (4).
Abstract:
It is an object of the present invention to provide a useful technique for effectively reducing vibration in a reciprocating power tool with a simple structure. According to the present invention, a representative reciprocating power tool includes a motor, a tool bit, a slider, a motion converting mechanism and a counter weight. The tool bit performs a predetermined operation by reciprocating. The slider reciprocates to drive the tool bit. The motion converting mechanism converts a rotating output of the motor into a reciprocating movement of the slider. The counter weight is provided in the motion converting mechanism. Further, the counter weight reciprocates in a direction opposite to the reciprocating direction of the slider. The phase difference between the reciprocating movement of the slider and the reciprocating movement of the counter weight is set such that a time lag is provided between the instant when the slider reaches a top dead center and the instant when the counter weight reaches a bottom dead center. With such construction, timing for reducing the kinetic energy caused by the reciprocating movement of the slider can be optimized, taking into account a cutting resistance that the tool bit receives from the workpiece during operation.
Abstract:
The nonlinear mechanical modulator of the present invention comprises first and second masses, a first spring connecting the first and second masses, and a second spring connecting the second mass and a fixed end. A motion input is applied to any one of the first and second masses and a resultant motion output is generated from the other one of the masses. Further, at least one of the springs has a nonlinear behavior characteristic that its stiffness varies according to a magnitude of the motion input. At this time, a nonlinear characteristic of the spring is categorized into a nonlinearly increasing characteristic that its stiffness is increased as its deflection becomes greater, and a nonlinearly decreasing characteristic that its stiffness is decreased as its deflection becomes greater. One or both of the two nonlinear characteristics can be applied to and employed in the mechanical modulator of the present invention.
Abstract:
An electromagnetic driving device for a mold clamping system is disclosed, which has a stationary plate fixedly mounted on a lathe bed; a mold guiding mechanism mounted parallel on the lathe bed; a movable plate slidably arranged on the mold guiding mechanism, facing the stationary plate, for generating a relative slide to the stationary plate; and a movable plate driving mechanism for driving the movable plate on the mold guiding mechanism. The electromagnetic driving device utilizes magnetic force to drive the linkage, movable plate etc. to perform open-mold movement, close-mold movement, and mold-locking movement.
Abstract:
Disclosed is a torus crank mechanism including a housing assembly (100) providing sealed chambers (145 to 148), a core (200) centrally arranged in the housing assembly while having a vertical shaft (215 or 216) protruded from one or each of upper and lower surfaces of the core, and horizontal shafts (211 to 214), a rotor (300) adapted to rotate in a reciprocating fashion around the core while having rotating vanes (311 to 314) arranged in respective chambers, and guide slots (315 to 318), bevel gears (410 to 440) rotatably supported by respective horizontal shafts while having respective eccentric sliders (411, 421, 431, and 441) rotatably and slidably received in the guide slots, and an output gear (500 or 600) rotatably supported by the vertical shaft. A multiple torus crank mechanism is configured by coaxially connecting torus crank mechanisms each having the above described configuration.
Abstract:
A drop away leaf pivot unit for use with a clamp in a manufacturing environment. The drop away leaf pivot unit includes a body having a plurality of orifices therethrough and a chamber defined therein. A base member is connected to the body at one side thereof. The pivot unit includes a cylinder extending from an end of the body with a cylinder having a piston and piston rod therein. A spline shaft is rotatably supported by the body and has a drive link engaged therewith. The drive link is also connected to the piston rod on the opposite end. At least one stop member is engaged with the shaft on an end. The drop away leaf pivot unit also includes an arm secured to the shaft on an outer portion of the shaft, outside of the body of the pivot unit. A cover plate is secured to both ends of the body to ensure an enclosed operating environment for certain components of the pivot unit.
Abstract:
A slide positioner for moving a structural member from an inoperating position to a working or operating position has a square shaft for supporting the structural member. Two bearing assemblies are adapted for supporting the sliding shaft. The two bearing assemblies are spaced one from the other and are connected to a stationary base. One of the bearing assemblies is rigidly connected to a pneumatic cylinder whose piston rod is connected to the sliding shaft. The bearing assemblies are mountable to the base in various angular positions since the bearing assemblies may be pivoted around an axis which is parallel to the axis of the sliding shaft.