Abstract:
A system and method for safely enabling the delivery of at least one gas line to at least one point of use in a facility by using a vacuum system and a gas delivery system wherein the gas delivery system is housed within the vacuum system is disclosed herein. An interior volume of a conduit containing therein at least one gas line is maintained at reduced pressure as one end of the gas line connects to a gas source and another end of the gas line connects to a point of use. By using a conduit to enclose the individual gas lines and using a single feed line for each gas, the embodiments disclosed herein reduce the number of individual gas lines that need to be run through a facility.
Abstract:
A system and method for safely enabling the delivery of at least one gas line to at least one point of use in a facility by using a vacuum system and a gas delivery system wherein the gas delivery system is housed within the vacuum system is disclosed herein. An interior volume of a conduit containing therein at least one gas line is maintained at reduced pressure as one end of the gas line connects to a gas source and another end of the gas line connects to a point of use. By using a conduit to enclose the individual gas lines and using a single feed line for each gas, the embodiments disclosed herein reduce the number of individual gas lines that need to be run through a facility.
Abstract:
A pressure difference generating apparatus includes a first pipe, a second pipe and a third pipe. The first pipe have a first inlet. The second pipe disposed inside of the first pipe has a conical inlet runner, a conical outlet runner and a neck portion between the conical inlet runner and outlet runner. The third pipe has a third conical outlet portion extending into the conical inlet runner. A first fluid and a second fluid flow into the first pipe and the third pipe separately in different flow rates. A negative pressure generated between the third conical outlet portion and the conical inlet runner allows at least part of the first fluid to flow into the conical inlet runner, then the neck portion, then the conical outlet runner, and finally out of the second pipe with the second fluid.
Abstract:
A subsea fluid processing system is provided containing a liquid reservoir, an inlet tank, a pump, an outlet system, and a fluid re-circulation loop. The liquid reservoir circulates a primer liquid stream to the inlet tank via the fluid re-circulation loop. The inlet tank further receives a first production fluid stream and mixes it with the primer liquid stream to produce thereby a second production fluid stream having a reduced gas volume fraction (GVF) relative to the first production fluid stream. The pump receives the second production fluid stream from the inlet tank and increases its pressure. Further, the outlet system containing the liquid reservoir receives the second production fluid stream from the pump and separates at least a portion of the primer liquid stream from a principal production stream. The primer liquid includes at least one exogenous liquid not derived from the first production fluid stream.
Abstract:
A pressure difference generating apparatus includes a first pipe, a second pipe and a third pipe. The first pipe have a first inlet. The second pipe disposed inside of the first pipe has a conical inlet runner, a conical outlet runner and a neck portion between the conical inlet runner and outlet runner. The third pipe has a third conical outlet portion extending into the conical inlet runner. A first fluid and a second fluid flow into the first pipe and the third pipe separately in different flow rates. A negative pressure generated between the third conical outlet portion and the conical inlet runner allows at least part of the first fluid to flow into the conical inlet runner, then the neck portion, then the conical outlet runner, and finally out of the second pipe with the second fluid.
Abstract:
A booster-ejector system captures and recycles leakage fluids from a process. When a pressure differential (head) of the process is above a threshold value, an ejector system uses motive fluid from a process high-pressure (HP) region to entrain and compress the leakage fluid, and direct it to a low pressure (LP) region. When the head is below the threshold value, a controller reconfigures a plumbing system and activates a leakage pump to pump the leakage fluid to the LP region. The system can include only one ejector, or a plurality thereof, which can be coupled such that the diffuser output of each ejector is directed to the suction input of the next ejector. At least one of the ejectors can include an exchangeable throat, which can impart a rotational component to the fluid. The HP and LP regions can be the output and input, respectively, of a compressor.