摘要:
The systems and methods of this disclosure control the flow rate of conditioned fluid at thermal distribution devices and at a conditioned fluid source that supplies conditioned fluid to the thermal distribution devices. The systems include multiple thermal distribution devices disposed throughout multiple rooms of a building, a fluid flow control device in fluid communication with each of the thermal distribution devices, multiple sensors disposed on each of the thermal distribution devices, a room temperature sensor disposed in each of the rooms, a first controller coupled to each of the fluid flow control devices, and a second controller coupled to a source of conditioned fluid. The first controllers control respective fluid flow control devices based on the measurement data obtained from the sensors and the room temperature sensors and a second controller controls the conditioned fluid source based on the demand for conditioned fluid by the thermal distribution devices.
摘要:
The systems and methods of this disclosure control the flow rate of conditioned fluid at thermal distribution devices and at a conditioned fluid source that supplies conditioned fluid to the thermal distribution devices. The systems include multiple thermal distribution devices disposed throughout multiple rooms of a building, a fluid flow control device in fluid communication with each of the thermal distribution devices, multiple sensors disposed on each of the thermal distribution devices, a room temperature sensor disposed in each of the rooms, a first controller coupled to each of the fluid flow control devices, and a second controller coupled to a source of conditioned fluid. The first controllers control respective fluid flow control devices based on the measurement data obtained from the sensors and the room temperature sensors and a second controller controls the conditioned fluid source based on the demand for conditioned fluid by the thermal distribution devices.
摘要:
In order to solve the numerous problems with existing steam, vacuum, and hot water heating systems, first presented is a novel system and method for a vapor vacuum system having low temperature condensate return which can operate without steam traps in both single-pipe and dual-pipe configurations. Secondly is disclosed systems and methods for integrating the disclosed vapor vacuum system with a condensing boiler. Thirdly is presented several systems and method of operating radiators having low temperature condensate return with the disclosed vapor vacuum system. Finally is presented condensing vacuum boiler designs that can be utilized with the disclosed vapor vacuum system. Also presented are embodiments having naturally-induced vacuum and utilizing district heat as well as combined heat and power. All innovations presented herein make vapor vacuum steam more efficient and economical for industrial, commercial, and home applications.
摘要:
The system includes a boiler, and multiple radiators connected to the boiler via a network of pipes. It includes a central processor for monitoring and control, air vent controllers that control the flow of steam through the radiators and a boiler control which turns the boiler on and off. The radiators are divided into groups. The central controller communicates with the air vent controllers to determine the conditions in the various groups. Based at least in part on the conditions, central controller may determine that the group requires heat. If heat is required and other parameters agree, central processor determines the state of the boiler. If off, the boiler is instructed to turn on and the air vent controllers in the group are instructed to open. Each air vent controller in that heat zone will then open allowing air to flow through the radiator and heat to be provided.
摘要:
A freeze-proof mechanical steam trap in a steam heating system includes a vapor filled pipe which draws heat from a discharge manifold and a jacket of foamed polyurethane for protecting the condensate in the trap. The heat pipe in the preferred embodiment is a vertical discharge pipe which utilizes flash steam in the discharge manifold as its working vapor and which transfers its heat to the condensate in an inverted bucket trap and its inlet pipe through a heat exchange arrangement.
摘要:
A dual fluid heat exchange system is presented that provides a stable output temperature for a heated fluid while minimizing the output temperature of a cooled fluid. The heated and cooled fluids are brought into thermal contact with each other within a tank. The output temperature of the warmed fluid is maintained at a stable temperature by a re-circulation loop that connects directly to the mid portion of the tank such that the re-circulated fluid flow primarily warms only a re-circulation section of the tank. The other, lower flow rate, section of the tank may be positioned so that it has a cooler temperature and thus serves to increase the efficiency of the heat exchange by extracting extra heat energy out of the cooled fluid before it leaves the tank. Alternatively, the low flow rate section of the tank may be warmer than the re-circulated section, and thus allow the re-circulated section to be cooler than the output temperature of the warmed fluid.
摘要:
In order to solve the numerous problems with existing steam, vacuum, and hot water heating systems, presented are novel systems and methods of vapor vacuum heating having several improvements over the prior art, including: condensate return which can operate without steam traps; naturally-induced vacuum; improved vacuum pump operation for sustaining vacuum in such systems; liquid lift apparatus for use with such systems; and other improvements. All innovations presented herein make vapor vacuum heating more efficient and economical for industrial, commercial, and home applications. A field test conducted with these innovations show results of about 26-50% reduced energy usage, implying significant energy savings from the use of the present invention over current heating systems.
摘要:
A steam distribution control system and method for a steam heating system are provided. The steam heating system may include a plurality of radiators, a boiler that provides steam to the plurality of radiators, and a plurality of steam pipes that carry the steam to the plurality of radiators, respectively. The steam distribution control system may include a plurality of steam-air vents provided at the plurality of radiators, respectively, and a central controller in communication with the plurality of steam-air vents that selectively controls the plurality of steam-air vents to control an amount of steam distributed into each of the plurality of radiators. The method may include providing a steam-air vent at each of the plurality of radiators, and selectively controlling the plurality of steam-air vents to control an amount of steam distributed into each of the plurality of radiators.