Abstract:
A polarization conversion system uses patterned half-wave retarder material and a polarizing beam splitter. The retarder material is applied to a surface of the polarizing beam splitter or other substrate before patterning. Patterning is accomplished by exposing the retarder material to oriented light, and may be done using an optical mask, or may be done through the polarization beam splitter. Selected areas of the patterned retarder layer produce no net rotation of light from the polarizing beam splitter, while other areas rotate light ninety degrees, thus providing polarization conversion.
Abstract:
A polarization rotator and crystalline quartz plate for use with an optical imaging system. The system has several imaging optical components (L1-L16) sequentially arranged along an optical axis (16), a means for creating radially polarized light arranged at a given location in that region extending up to the last of said imaging optical components, and a crystalline-quartz plate employable in such a system. A polarization rotator (14) for rotating the planes of polarization of radially polarized light and transforming same into tangentially polarized light, particularly in the form of a crystalline-quartz plate as noted above, is provided at a given location within a region commencing where those imaging optical components that follow said means for creating radially polarized light in the optical train are arranged. The optical imaging system is particularly advantageous when embodied as a microlithographic projection exposure system.
Abstract:
A waveguide polarization recovery system both polarizes the input light energy for use with an LCD imager and converts the polarity of unusable light energy to add to the illumination of the LCD imager. The compact polarization recovery waveguide system generally includes: (1) an input waveguide that provides non-polarized light energy into the system; (2) an output waveguide that receives polarized light energy from the system; (3) a polarized beam splitter that received the light energy from the input waveguide and transmits lights energy of a first polarization type and reflects light energy of a second polarization type, and (4) a wave plate that modifies the polarization of either the transmitted or reflected light energy. The polarization recovery system also generally includes one or more mirrors that are positioned as need to direct the transmitted and the reflected light energy to the output waveguide. The input and output waveguides may be shaped as needed by the projection system. For example, either one or both of the input and output waveguides may be tapered as needed to produce a desired image. In the waveguide polarization recovery system, the input and output waveguides are configured to have either an either a substantially parallel or a substantially perpendicular orientation. In another embodiment, the waveguide polarization recovery system further includes has one or more nullgapsnull of optically clear material positioned between the optical components to encourage the occurrence of total internal reflection that minimizes the loss of the optical energy by the system.
Abstract:
An optical element such as a beam splitter for interferometer separates a heterodyne beam from the laser into separate beams having different the frequencies and orthogonal polarizations. Optical fibers can conduct the separate beams to a beam combiner for interferometer optics. The PBS and/or the beam combiner can use a coating to reflect one linear polarization and transmit an orthogonal linear polarization. To improve extinction ratios in the PBS or the beam combiner, a yaw angle for an input beam is non-zero and corresponds to a peak in the extinction ratio of a reflected beam.
Abstract:
A diffusing film comprises a transparent resin in which scatterers are dispersed. The difference between the refractive index of the transparent resin and that of the scatterers is in the range of 0.04 to 1.5. The scatterers are flat particles having sizes of 0.1 to 50 nullm.
Abstract:
An objective (1), in particular for a microlithography projection apparatus, has lenses or lens parts falling into at least two groups. The first group (3) is made of a first crystalline material and the second group (5) is made of a second crystalline material. In the first group (3), an outermost aperture ray (15) is subject to a first optical path difference between two mutually orthogonal states of linear polarization; and the same outermost aperture ray is subject to a second optical path difference in the second group (5). The two different crystalline materials are selected so that the first and second optical path difference approximately compensate each other. A suitable selection consists of calcium fluoride for the first and barium fluoride for the second crystalline material.
Abstract:
The present application teaches systems and techniques for reducing the polarization dependency of an optical component by combining the actions of a circulator and a polarization beam combiner to separate an optical signal into a plurality of orthogonally oriented polarization components; rotate at least one of the components so that the polarization orientation of the components are parallel; propagate the components through respective input ports of an optical component at substantially the same time; rotate at least one of a plurality of output components from the optical component so that the polarization orientation of the output components are orthogonal; and recombine the plurality of output components into an output optical signal.
Abstract:
A wire grid polarizer (100) for polarizing an incident light beam (130), comprising a substrate (505) having a first surface (410) and a second surface (510); and a first array of parallel, elongated wires disposed on the first surface (410). Each of the wires are spaced apart at a grid period less than a wavelength of the incident light; and a second array of parallel, elongated wires disposed on said second surface (420) where the second array of wires are oriented parallel to the first array of wires.
Abstract:
The selective filtering of light by polarization interference may be used to enhance vision and/or protect eyes from harmful light rays. For example, such filtering may be used in sunglasses, color corrective eyewear or protective eyewear. The selective filtering of incident light may provide any desired spectral transmission (including visible light and light not visible to the eye) and is performed by a pair of polarizing elements that sandwich a retarder stack. The filtering structure may be formed by multi-layer polarizing structures and may be formed by fabricating sheet laminates that are die cut to form inexpensive laminates. The laminates may be flat or curved in one (e.g., wrap-around) or more dimensions.
Abstract:
This invention relates to electromagnetic wave beam paths, formation of the beam, illumination of programmable electromagnetic wave field vector orientation rotating devices (nullPEMFVORDnull) with an electromagnetic beam, and the technique of projection of the modulated beam. This invention also relates to a unique light path and method of forming the light into a rectangular beam to be used for optical projection systems and, more particularly, in a color and/or black and white liquid crystal device (LCD) projectors that produce high resolution, high brightness and/or three-dimensional images. This invention further relates to a device capable of receiving and displaying two-dimensional and three dimensional images.