Abstract:
A method for performing timing closure on VLSI chips in a distributed environment is described. Abstracting the physical and timing resources of a chip and providing an asynchronous method of updating that abstraction allows multiple partitions of a chip to be optimized concurrently. A global view of physical and timing resources is supplied to local optimizations which are applied concurrently to achieve timing closure. Portions of the hierarchy are optimized in separate processes. Partitioning of the chip is performed along hierarchical lines, with each process owning a single partition in the hierarchy. The processes may be executed by a single computer, or spread across multiple computers in a local network. While optimizations performed by a single process are only applied to its given portion of the hierarchy, decisions are made in the context of the entire hierarchy. These optimizations include placement, synthesis, and routing. The present method can also be expanded to include other resources, such as routing resource, power supply current, power/thermal budget, substrate noise budget, and the like, all of which being able to be similarly abstracted and shared.
Abstract:
A method, system and computer program product for building decision diagrams efficiently in a structural network representation of a digital circuit using a dynamic resource constrained and interleaved depth-first-search and modified breadth-first-search schedule is disclosed. The method includes setting a first size limit for a first set of one or more m-ary decision representations describing a logic function and setting a second size limit for a second set of one or more m-ary decision representations describing a logic function. The first set of m-ary decision representations of the logic function is then built with one of the set of a depth-first technique or a breadth-first technique until the first size limit is reached, and a second set of m-ary decision representations of the logic function is built with the other technique until the second size limit is reached. In response to determining that a union of first set and the second set of m-ary decision representations do not describe the logic function, the first and second size limits are increased, and the steps of building the first and second set are repeated. In response to determining that the union of the first set of m-ary decision representations and the second set of m-ary decision representations describe the logic function, the union is reported.
Abstract:
A computer-implemented method for aiding in the design of an integrated circuit (IC) floorplan. The method comprises receiving a netlist, physical layout information, and timing constraints of the IC and performing timing analysis of the signal paths of the IC. The user selects the set of nets to by analyzed. The timing analysis comprises calculating net delays as a function of the length of the signal paths. The timing analysis further comprises calculating slack times by subtracting from the clock cycle time of the IC the sum of the driven at timing constraint, the needed by timing constraint, and the net delay. Paths which have a slack time greater than a slack failure value are passing nets and paths which have a slack time greater than a slack failure value are failing nets. The slack failure value is user-specifiable and defaults to zero. The method further comprises displaying in a spreadsheet the timing constraints, net delays, and slack times for each path selected, thus providing the designer with complex multi-dimensional feedback. The feedback for each path in the spreadsheet is accompanied by a hyperlink button, which the designer selects in order to graphically display the path on a graphical view of the floorplan. Thus the designer is enabled to relate the non-graphical timing information to a graphical display of the paths and apply his or her intuitive knowledge to make necessary changes to the floorplan. The timing information is further summarily displayed in a histogram, thus providing visual feedback regarding the timing quality of the floorplan. The method provides means for the designer to display failing paths, passing paths, all paths, and paths skipped in timing analysis due to the absence of timing constraints.