Abstract:
A nuclear reactor controlled by moving a liquid fuel between a reservoir and chambers in the core is provided. No pumps or moving parts within the reactor vessel are needed to move the fuel. The control system moves the liquid fuel between the core and the reservoir by moving a separate control gas. It can monitor the internal state of the core through the control connections. The fuel chamber is shaped so that evolved gases escape the core and can be collected at the control connections. The core reverts to a safe state on power failure.
Abstract:
A passive nuclear reactor control device. The passive nuclear reactor control device comprises a sealed chamber, which comprises a reservoir and a tube in fluid communication with the reservoir. A molten salt is within the sealed chamber, the molten salt being a eutectic mixture of a monovalent metal halide, and a fluoride or chloride of one or more lanthanides and/or a luoride or chloride of hafnium. A gas is within the sealed chamber, and the gas does not react with the molten salt.
Abstract:
The present invention relates to a method for controlling a pressurized water reactor (100) comprising the steps that involve measuring the effective power (Pe) of the nuclear reactor; acquiring a reference value for the desired power (Pc); acquiring an estimated duration (DURATION) for the increase in power in order to achieve said reference value of the target power (Pc) desired, said estimated duration (DURATION) corresponding to the time taken for the power to increase from said effective power (Pe) to said reference value for the target power (Pc); determining the reference position (Z) of at least one control rod cluster among said plurality of control rod clusters (40) in order to achieve said reference value for said target power (Pc) desired as a function of said estimated duration (DURATION), of said measured effective power (Pe) and of said reference value for said target power (Pc); monitoring the position of said at least one control rod cluster so as to position it in its reference position (Z).
Abstract:
The present invention relates to a method for controlling a pressurized water reactor (100) comprising the steps that involve measuring the effective power (Pe) of the nuclear reactor; acquiring a reference value for the desired power (Pc); acquiring an estimated duration (DURATION) for the increase in power in order to achieve said reference value of the target power (Pc) desired, said estimated duration (DURATION) corresponding to the time taken for the power to increase from said effective power (Pe) to said reference value for the target power (Pc); determining the reference position (Z) of at least one control rod cluster among said plurality of control rod clusters (40) in order to achieve said reference value for said target power (Pc) desired as a function of said estimated duration (DURATION), of said measured effective power (Pe) and of said reference value for said target power (Pc); monitoring the position of said at least one control rod cluster so as to position it in its reference position (Z).
Abstract:
A method for operating a controller having a number of timers to thereby control a plurality of events greater than the number of timers, includes, between clock ticks, receiving one or more signals from sensors, switches, executing programs, or a combination therefore that initiate one or more timed events. After a clock tick immediately following the receiving of the one or more signals, the method further includes updating entries in an event control block in accordance with the received signal or signals. The entries include a time remaining for pending events, a time past due for active events, and a priority of each event. The method further includes determining whether any pending event or events have timed out, activating any timed out events, and sending a signal notifying an executing program of the activated event having the highest priority.
Abstract:
A method and system is provided for a nuclear reactor safety related application. The method includes executing two forms of a same application-specific logic, one of the two forms implemented as hardware logic, and the other of the two forms implemented as software instructions for execution by microprocessor-based controlling software. Each form of the application-specific logic is executed with a same set of inputs. The method compares a result produced from the execution of the hardware-implemented form to a result produced from the execution of the software-implemented form. When the compared results concur, the controlling software performs actions associated with the concurring results by executing microprocessor-based software. When the compared results fail to concur, the controlling software reports the failure of the compared results to concur to an operator by executing microprocessor-based software, and thereafter places the microprocessor-based software system into an inoperative (INOP) mode.
Abstract:
A nuclear reactor plant is provided in which the reactor coolant system contains a dissolved solution of enriched boric acid. The boron-10 to boron-11 atomic isotope ratio of the enriched boric acid solution is greater than 30:70 at the start of the reactor core cycle. The nuclear reactor plant design provides for minimal mixing between the reactor coolant solution containing the enriched boric acid solution and the natural boric acid solution used during refueling operations.
Abstract:
A gas-cooled high temperature reactor is provided having a core filled with spherical fuel elements, in combination with a graphite side reflector including at least one nose-like projection protruding radially into the reactor core from said graphite said reflector, the at least one nose-like projection including at least one vertically disposed cavity adapted to receive discrete absorber material elements introduced into said reactor core as well as a vertically disposed continuous opening which permits communication between said cavity and the core of the reactor, said opening having a maximum width adjacent said cavity which is less than the minimum dimension of said discrete absorber material elements in order to prevent passage of said elements into said continuous opening from said cavity.
Abstract:
Disclosed is a nuclear power plant comprising a high-temperature pebble bed reactor contained in a cylindrical steel pressure vessel in which an upper part of the cylindrical steel pressure vessel, which contains a heat utilization system, is retracted and equipped with a cover upon which circulating blowers are placed. The heat utilization system comprises, in a known manner, a single steam generator. The steam generator comprises at least two sub-systems independent of one another, with their own distributors and collectors, and with their own inlet and outlet lines. A first shut-down arrangement comprises a plurality of absorber rods insertable into bores of the side reflector from above and comprises rod drives arranged outside the steel pressure vessel in the area of its retracted upper part. A second shut-down arrangement comprises small absorber spheres for introducing into the core of the reactor, and several storage containers and annular conduits for said spheres. The storage containers are also arranged outside the steel pressure vessel in the area of its retracted upper part. Annular conduits for the introduction of the small absorber sphere are, however, disposed inside the steel pressure vessel and connected with channels provided in projections of the side reflector protruding into the core.
Abstract:
A control system for a nuclear reactor comprising hollow mechanically operated control rods and a liquid neutron absorber which may be circulated through the hollow control rods. The liquid neutron absorber provides the nuclear reactor with a redundant safety system to deactivate the reactor.