Abstract:
A method and apparatus for preventing the formation of leachable mercury in mercury arc vapor discharge lamps which comprises coating at least one of the metallic components of the mercury arc vapor discharge lamps with at least one noble metal coating.
Abstract:
A glow discharge lamp has a discharge vessel, a pair of electrodes mounted in the discharge vessel, ionizable filling which is principally made of rare gas and filled in the discharge vessel, and emissive material containing zinc alloy and provided on at least one of the electrodes.
Abstract:
Low-pressure mercury vapour discharge lamp is provided with a discharge vessel (10) and a first and a second end portion (12a; 12b). The discharge vessel (10) encloses a discharge space (13) provided with a filling of mercury and a rare gas in a gastight manner. Each end portion (12a; 12b) supports an electrode (20a; 20b) which is arranged in the discharge space (13). Current supply conductors (30a, 30a′; 30b, 30b′) extend from the electrodes (20a; 20b) through the end portions (12a; 12b) to outside the discharge vessel (10). A UV-reflecting shield (15a; 15b) is positioned in the space between the electrodes (20a; 20b) and the end portions (12a; 12b), thereby protecting the end portions (12a; 12b) from the creation of reactive sites in the end portions (12a; 12b) at which reactive sites mercury is bound. Preferably, the shield (15a; 15b) is attached to the current supply conductors (30a, 30a′; 30b, 30b′). The lamp according to the invention has a comparatively low mercury consumption.
Abstract:
The present invention relates to a display device with a color filter used as an electrode which improves both color purity and optical efficiency of the display device and a method for manufacturing the same. The display device with color filters used as electrodes in accordance with the present invention is achieved by forming conductive color filters on an upper substrate. The fabrication process is simple and accordingly the production yield is increased for thereby reducing the manufacturing cost. In addition, the light transmittance and optical efficiency are increased, and the color purity is increased and external light reflection is effectively shut off.
Abstract:
An improved deuterium lamp (20) includes a gas-filled envelope (21), a cathode (22), an anode (23), electrical leads (24) sealingly penetrating the glass envelope and connected to the anode and cathode, respectively, a window-shielding electrode (25), a cathode-shielding electrode (26), a focusing electrode (28), and a ceramic support (29). The improvement comprises the anode being mounted on a rear surface of the ceramic support and being so configured and arranged as to have nothing that substantially interferes with the radiation of heat in rearward direction from the anode.
Abstract:
A PDP has a front and back substrates with a space between them. Barrier ribs in the space define discharge space groups. Each group has first, second and third discharge spaces. Each discharge space has an upper and a lower opening. Air-locking ribs seal the lower opening of the first discharge space, the upper opening and lower openings of the second discharge space, and the upper opening of the third discharge space. A first wall and the adjacent air-locking ribs defines a first channel which is accessible through each of the upper openings of the first discharge spaces. A second wall and the adjacent air-locking ribs defines a second channel which is accessible through each of the lower openings of the third discharge spaces. First, second and third gases respectively fill the first, second and third discharge spaces to emit different colored light.