Abstract:
An electron source for, for example, an electron microscope cannot exhibit a high brightness and a large beam current at the same time, because the virtual emitter dimension is enlarged by Coulomb repulsion in the electron beam in the case of a large beam current, thus reducing the brightness. In a conventional electron source switching-over could take place from a high brightness to a large beam current by varying the dimension of a beam-limiting diaphragm; however, this is objectionable because the location of such a diaphragm is not readily accessible. In accordance with the invention said switching-over can take place by arranging two lenses 26, 28 in the source, which lenses parallelize In the described circumstances the beam either directly behind the emitter 4 (large current) or directly in front of the diaphragm aperture 32 (high brightness).
Abstract:
One embodiment disclosed is an electron beam apparatus for examination of a specimen. The apparatus includes a photocathode source, an objective lens, a beam separator, and a projection lens. The photocathode source generates a primary electron beam with reduced energy spread. The low energy spread beam is focused onto the specimen by the objective lens. The beam separator separates a scattered electron beam from the primary electron beam, and the projection lens images the scattered electron beam. Software routines may analyze the image data for purposes of automated inspection or review.
Abstract:
Apparatus for producing a flux of charge carriers that may be used in many applications including imaging and lithography comprises an electron source which includes an emitter with a tip radius of about one nanometer and a closely configured extractor, together with a specimen for receiving an electron beam from the source. The apparatus may operate in air under atmospheric conditions and at a much reduced operating voltage.