Abstract:
Disclosed is a compact, small diameter, high resolution charged particle-energy detecting, retractable cylindrical mirror analyzer system. Multiple sequential stages enable charged particle-energy detection with an improved resolution as compared to that possible where only a single stage is utilized. The relatively small size allows for positioning, via a manipulator of the cylindrical mirror analyzer system, which is attached to a linear motion feedthrough mounted on a conflat flange of a vacuum system.
Abstract:
A monochrometer mounted with the electron gun of an electron microscope or the like. This monochrometer does not need movement of a slit. An electron source consisting of any one of a thermal emission-type electron source (such as an LaB6 electron source or a tungsten hairpin), a Schottky emission-type electron source, and a tunneling field emission-type electron source is used. The slit is made of a single metal plate and mounted in position fixedly. Electrons are emitted from the electron source and dispersed within a plane including the slit according to energies. The slit is so positioned that it passes only those of the dispersed electrons which have energies close to the peak energy and blocks electrons having energies higher or lower than the peak energy.
Abstract:
The resolution of a charged particle beam, such as a focused ion beam (FIB), is optimized by providing an energy filter in the ion beam stream. The energy filter permits ions having a desired energy range to pass while dispersing and filtering out any ions outside the desired energy range. By reducing the energy spread of the ion beam, the chromatic aberration of the ion beam is reduced. Consequently, the current density of the ion beam is increased. The energy filter may be, e.g., a Wien type filter that is optimized as an energy filter as opposed to a mass filter. For example, to achieve useful dispersion the energy filter may use a quadrupole structure between two magnetic pole pieces thereby producing a combined quadrupole electric field and dipole electric field within a magnetic field.