摘要:
The present invention is to develop a proper new process for deep submicron PMOSFET. The characteristic of this process is using Si:Ge:B layer to deposit on the poly-Si film, then go through oxidation or diffusion method to diffuse the boron ion into the poly-Si gate in order to form p-type poly-Si gate. This layer can be etched selectively after spacer etching and reserve a concave gate structure. Thus, it can combine with selective W-CVD to form an excellent p-type poly-Si PMOSFET.
摘要:
A method of manufacturing a semiconductor device comprising the steps of forming an insulating layer on a first conductive layer deposited on a semiconductor substrate, treating the surface of the insulating layer and the exposed surface of the first conductive layer with a gas plasma containing halogen atoms, and depositing selectively a conductive material by vapor growth on the exposed surface of the first conductive layer so as to form a second conductive layer. The gas plasma containing halogen atoms can be formed by introducing a gas containing halogen atoms into the treatment chamber housing the sample, and applying high frequency power. The gas plasma containing halogen atoms can be formed by introducing a gas containing halogen atoms into the treatment chamber to adsorb the halogen atoms on the inner wall of the chamber, and applying high frequency power. Alternatively, the gas plasma can be formed by applying high frequency power after placing the sample and a halogen containing material inside the chamber. By treatment with the gas plasma containing halogen atoms, a second conductive layer can be deposited with good selectivity.
摘要:
A method for fabricating a metal oxide semiconductor field effect transistor, capable of achieving a reduction in topology by forming a trench on a silicon substrate by use of a temporary field oxide film and forming a gate electrode in the trench and capable of eliminating occurrence of a spiking phenomenon due to a metal wiring being in direct contact with the silicon substrate by forming a silicide film on a source and a drain, and capable of obtaining an increased contact margin of the metal wiring by overlapping the silicide film with a field oxide film formed on the silicon substrate.
摘要:
A bipolar transistor is fabricated in a CMOS-compatible process so as to be self-aligning, with resultant small geometry and improved high frequency performance, and to have improved hot carrier characteristics. The bipolar device has a laterally graded emitter structure that is fabricated in a "top-down" implant process. During fabrication sidewall spacers are formed overlying the peripheral region of the laterally graded emitter. These spacers protect the underlying region against counter-doping during a subsequent intrinsic base implant, and cause the emitter and base contacts to be self-aligning. Because bipolar dimensions are thus reduced, a very narrow base width is achieved, resulting in improved device cutoff frequency. Further, a narrower emitter-base contact separation is achieved, reducing junction area and attendant junction capacitance. A base link region is formed to further improve emitter-base breakdown voltage, and to reduce extrinsic base resistance. A BiCMOS integrated circuit may be fabricated with bipolar transistors of either polarity and with MOS transistors of either polarity. BiCMOS fabrication can occur wherein substantially the same process steps are employed, or wherein specific bipolar and MOS implant steps are decoupled to optimize laterally graded emitter dopant profiles, base-link resistance, and MOS off-state leakage currents.