Abstract:
A method for manufacturing a deep-submicron P-type metal-oxide semiconductor shallow junction utilizes an electron terminal structure with a base covered by a layer containing boron, germanium, and silicon. This layer containing boron, germanium, and silicon ("B--Ge--Si") is used as a shield during ion implanting and as an impurity ion source to form a high diffusion ion concentration at a shallow junction of the semiconductor base or substrate. The B--Ge--Si layer can be thoroughly removed using selective corrosive erosion. Due to the simplicity of this invention's manufacturing process, it can be used for deep-submicron PMOS component production, and thus, it has great practical value.
Abstract:
A fin-FET or other multi-gate transistor is disclosed. The transistor comprises a semiconductor substrate having a first lattice constant, and a semiconductor fin extending from the semiconductor substrate. The fin has a second lattice constant, different from the first lattice constant, and a top surface and two opposed side surfaces. The transistor also includes a gate dielectric covering at least a portion of said top surface and said two opposed side surfaces, and a gate electrode covering at least a portion of said gate dielectric. The resulting channel has a strain induced therein by the lattice mismatch between the fin and the substrate. This strain can be tuned by selection of the respective materials.
Abstract:
A structure of semiconductor device including an insulation substrate is provided. A channel layer is disposed on the insulation substrate. A plurality of doped layers is disposed on the insulation substrate, and protrudes from the channel layer. The doped layers form at least two source/drain electrode (S/D electrode) pairs, and each of the S/D electrode pairs has a different extension direction with respect to the channel layer. A gate dielectric layer is disposed on the channel layer. A gate layer is disposed on the gate dielectric layer. Preferably, for example, the extension direction of at least one of the S/D electrode pairs is a first direction, and the extension direction of at least another one of the S/D electrode pairs is a second direction.
Abstract:
A novel structure of nonvolatile memory is formed on p type silicon and includes a stacked gate, a tunneling dielectric layer, a floating gate (FG), a dielectric layer and a control gate (CG). One side of the stacked gate has a source region and the other has a drain region, wherein the surface of the source region includes a thin metal silicide connected with a channel region to form a Schottky barrier. A tilted angle implant with As or P doping is performed on the p type silicon substrate to form a drain region and extend a portion of the drain region to a channel region under the stacked gate. For implanting, an n doped source region is also formed, creating an offset between the source region and the channel region as a result of the tilted angle implant. For programming, the source region is grounded, positive voltage is applied to the drain region and the gate, such that the hot carriers inject into the floating gate through the channel adjacent to the source region.
Abstract:
A new method for manufacturing an MOS transistor is applied in the deep submicron process. In this method, a polysilicon layer is mainly used to form a raised source/drain structure and self-alignment is achieved by means of a planarization process. This method can reduce short channel effects and the series impedance of the source/drain as well as accomplish the local interconnection of a circuit and planarization. Therefore, this method is very suitable for manufacturing devices in the deep submicron process.
Abstract:
A method of fabricating a semiconductor device includes first providing an insulation substrate. A patterned conductive layer is formed over the insulation substrate, and the patterned conductive layer includes a channel region and a number of protruding regions. A gate structure layer is formed over the insulation substrate. The gate structure layer covers a part of the patterned conductive layer, and each of the protruding regions has an exposed region. A doping process is performed to dope at least the exposed region of the patterned conductive layer to form a number of S/D regions.
Abstract:
A method of fabricating a semiconductor device includes first providing an insulation substrate. A patterned conductive layer is formed over the insulation substrate, and the patterned conductive layer includes a channel region and a number of protruding regions. A gate structure layer is formed over the insulation substrate. The gate structure layer covers a part of the patterned conductive layer, and each of the protruding regions has an exposed region. A doping process is performed to dope at least the exposed region of the patterned conductive layer to form a number of S/D regions.
Abstract:
A method of reducing the boron-penetrating of effect in a CMOS transistor provides a silicon substrate, which comprises an isolating area, an active area and a gate oxide layer formed on the silicon substrate in the active layer. A polysilicon layer is then deposited on the silicon substrate. Next, boron ions (B+) are doped into the polysilicon layer. Next, a gate photoresist with a predetermined gate pattern is formed on the polysilicon layer. The polysilicon not covered by the gate photoresist is then etched to form a polysilicon gate. The gate photoresist is used as a mask to dope boron difluoride ions (BF2+) into the silicon substrate. Finally, after removing the gate photoresist, a tempering procedure is performed to form a shallow junction area of a source/drain region on the silicon substrate.
Abstract:
A method of forming a gate oxide layer with improved ability to resist process damage increases the reliability and yield of a transistor device. First, a nitrogen-containing gate oxide layer is formed on an element area of a silicon substrate. Then, a polysilicon layer is deposited on the gate oxide layer. Next, a gate doping process and a fluorine ion implantation are performed on the polysilicon layer. Then, a high-temperature tempering procedure is performed to make the fluorine enter the gate oxide layer.
Abstract:
A method is provided for selective oxidation on source/drain regions of transistors on an integrated circuit. The method includes the steps of a) incorporating a neutral species into first kind of the source/drain regions, and b) forming oxidation regions over the first kind of source/drain regions and second kind of the source/drain regions, wherein the oxidation regions over the second kind are thicker than the oxidation regions over the first kind.