摘要:
In one embodiment, an electrochemical cell stack comprises at least two electrochemical cells, wherein each electrochemical cell comprises a hollow elongated electrolyte, having disposed upon it an anode and a cathode, and further wherein with the exception of the outermost cell, each electrochemical cell is placed within another electrochemical cell in a manner such that at least one of the surfaces of the respective electrochemical cells are approximately parallel to one another.
摘要:
Catalytic layers for fuel cells are formed by co-depositing platinum or gold from a combustion chemical vapor deposition flame and carbon particles and ionomer from a non-flame, co-deposition flame. A layer having high platinum or gold loading with high particulate size is deposited. Such layers have high efficiency, whereby the total amount of platinum or gold used in a fuel cell may be reduced.
摘要:
The invention relates to a portable electrochemical oxygen generator, comprising: a proton-conducting polymer electrolyte membrane (PEM) (1); a water-filled, porous anode (2), with an anode chamber (6); a porous air cathode (3), with a cathode chamber (5), whereby the PEM, anode and cathode form a PEM-cell; a direct current source (4); a cathode gas condensate separator (7), connected to the anode chamber by means of a condensate line and a pump (8), to form a water-cooling circuit; a reservoir with reducing valve (9) for the oxygen generated and a controller/regulator unit (11), for the control/regulation of the oxygen generation, the air feed and the temperature of the PEM-cell.
摘要:
An electrolyte for a fuel cell includes an electrolyte body, a plurality of microstructures formed into or extending out of the electrolyte body, and thin film layers formed on the electrolyte body. A microstructure possesses a depth or a height and includes one or more sidewalls and a bottom surface. A sidewall of the microstructure advantageously creates a significant unobstructed diffusion area, wherein protons may travel laterally into or out of the electrolyte body. Therefore, when a proton is generated by the interaction of the fuel with a thin film catalyst layer, the proton may travel laterally only a short distance in order to enter or exit the electrolyte body, thereby improving the performance of the fuel cell.
摘要:
A fuel cell includes a circulating electrolyte for preventing fuel cross over. The electrolyte is past through a porous spacer positioned between the anode and the cathode. The circulating electrolyte removes any unused methanol fuel from the cell. The methanol may then be reclaimed from the electrolyte in a distillation loop.
摘要:
An electric energy generating apparatus configured to generate a desired electromotive force from hydrogen and oxygen. The apparatus comprises a hydrogen electrode film, an electrolyte film and an oxygen electrode film. The hydrogen electrode film, to which hydrogen is supplied, comprises a catalyst layer containing a decomposing catalyst that decomposes hydrogen into protons and electrons. The electrolyte film comprises a sheet having a plurality of voids. Oxygen is supplied to the oxygen electrode film. The voids in the electrolyte film are filled with proton-conducting material and/or the decomposing catalyst. This prevents the hydrogen from reaching the oxygen electrode film. When hydrogen is supplied to the hydrogen electrode film, the concentration of hydrogen of the oxygen electrode therefore decreased to such a value as required generating the desired electromotive force.
摘要:
The invention provides a fuel cell which comprises a solid polymer electrolyte sandwiched between a cathode to which an oxidizing agent gas is supplied and an anode to which a reducing agent gas is supplied, wherein at least one of the electrodes has an electroconductive organic polymer which has an oxidation-reduction function as an electrode catalyst. The invention further provides a fuel cell in which the electrode catalyst comprises a mixture of an electroconductive organic polymer and an inorganic oxidation-reduction catalyst, and has a higher output power.
摘要:
An electric power generator including a fuel cell, which includes a fuel cell anode and a fuel cell cathode separated by at least one proton exchange membrane and a hydrogen generator operative to provide molecular hydrogen to the fuel cell anode. The hydrogen generator includes a catalyst and employing a water-based fuel including one of salts, bases and acids, as well as at least one of zinc, magnesium, iron and aluminum. A method for electrical power generation using a fuel cell is also disclosed.
摘要:
The technique of the present invention attains simple and accurate evaluation of the performance of a fuel cell and enables produce of a high-performance electrode catalyst and a high-performance fuel cell. The procedure makes platinum, a noble metal, and iron, a base metal, carried on carbon having a large specific surface area, and heats up the carbon with platinum and iron to a specific temperature to reduce iron. A resulting platinum-iron alloy electrode catalyst exerts excellent catalytic functions. A fuel cell using this electrode catalyst has a high IR compensation voltage. The quantity of carbon monoxide adsorbed by this novel electrode catalyst is not less than 14 Ncc per one gram of platinum. The atomic number ratio of iron (Fe) to platinum (Pt) in the catalyst is not lower than 0.14 by EDX analysis, and the ratio of the binding number of Pt atom with Fe atom to the total binding number relating to Pt atom is not lower than 0.10 by EXAFS analysis. Each electrode catalyst produced is evaluated by measurement of these data. The fuel cell including the electrode catalyst having the favorable result of evaluation ensures the desired performances.
摘要:
A fuel cell has a unit cell whose output is increased. A unit cell of a fuel cell includes a cathode electrode having a gas diffusion layer and an electrode catalyst layer. The electrode catalyst layer is made of carbon black carrying a PtnullMn-based alloy such as a PtnullMn alloy on its particle surface. For operating the fuel cell which includes the cathode electrode, it is preferable to make the pressure of an oxygen-containing gas supplied to the cathode electrode higher than the pressure of an hydrogen-containing gas supplied to an anode electrode to make the pressure at the cathode electrode higher than the pressure at the anode electrode.