摘要:
In a magnet-exciting rotating electric machine system, a rotor surface has magnetic salient poles and island-shaped magnetic poles alternately in circumferential direction, and the island-shaped magnetic poles are constituted so that magnetic flux coming from an external source does not flow through. A magnetic excitation part magnetizes the island-shaped magnetic poles and the magnetic salient poles collectively in the same direction, and then control a flux amount flowing through an armature. The armature has armature coils that face the magnetic salient pole and the island-shaped magnetic pole simultaneously so that driving torque fluctuation or power generation voltage waveform distortion is controlled. The magnetic excitation part changes magnetization state of a field magnet irreversibly, or changes an excitation current to an excitation coil to control a flux crossing the armature.
摘要:
A dynamoelectric machine comprises: a stator that comprises a plurality of stator poles arranged around a stator surface of revolution with a stator axis for the stator surface of revolution; at least one rotor that comprises a plurality of permanent rotor magnets arranged around a rotor surface of revolution with a rotor axis for the rotor surface of revolution that is coincident with the stator axis and with the rotor surface of revolution adjacent the stator surface of revolution; a drive shaft with a drive shaft axis of rotation that is substantially coincident with the stator axis coupled to the rotor for rotating the rotor relative to the stator about the drive shaft axis of rotation; and a at least one actuator for axially displacing the rotor surface of revolution along the drive shaft relative to the stator surface of revolution to change magnetic flux interaction between the stator poles and the rotor magnets; wherein at least one of the surfaces of revolution tilts with respect to the drive shaft axis of rotation.
摘要:
A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.