摘要:
There are provided an electrophotographic apparatus and an electrophotographic process featured by control satisfying a condition 1n(n).times.1n(S)/1n(E).ltoreq.19.0 among the localized energy level density n in the photoconductive layer of an amorphous silicon photosensitive member employed in the electrophotographic apparatus, the electric field E applied to the photosensitive member, and the surfacial moving speed S thereof. Such control reduces the photocarriers remaining in the photoconductive layer and inducing the photomemory effect, thereby suppressing the influence of a remaining latent image on the latent image generated in a next step, and providing an image of high quality without the photomemory effect, within resulting in a loss in the charging efficiency.
摘要:
A photosensitive member is formed by applying on an electrically conductive substrate, a first photoconductive layer sensitive to a visible light, an insulating charge retentive layer, and a second photoconductive layer sensitive to ultraviolet light, successively in this order. At first the photosensitive member is uniformly charged to a negative polarity, while the photosensitive member is uniformly exposed to the visible light. Then an image of a document to be copied is projected while the photosensitive member is charged to a positive polarity. After that the photosensitive layer is uniformly exposed to the visible light and finally the photosensitive member is uniformly exposed to the ultraviolet light. In this manner, an electrostatic charge image having high contrast and resolution is formed in the photosensitive member by means of charges which are stably trapped across the charge retentive layer. By repeating development and transfer for the same and single charge image once formed in the photosensitive member a number of copies having excellent image quality can be printed.
摘要:
When the uniformly charged surface of a photoreceptor is exposed to an intensive light (a), a potential at an exposed position (Vx) is lower than a bias voltage (Vbias-A) of a first developing unit (b), toner A attaches to the exposed position (Vx) after its developing process, and its potential is lower than a bias voltage (Vbias-B) of a second developing unit (c). When the uniformly charged surface of a photoreceptor is exposed to a weak light, a potential at the exposed position (Vx) is lower than the bias voltage (Vbias-B) but higher than the bias voltage (Vbias-A) (e). Only toner B attaches to the photoreceptor (f). If the toner A and toner B belong to the same color family and are black toner and gray toner, an image of two density levels is formed, and the gradation and the graininess of the resultant picture are improved.
摘要:
A charge carrier medium 1 including an insulating layer 11 laminated on an electrically conductive layer 12 with an electrostatic latent image 2 recorded on the insulating layer 11 is brought into contact with water, etc., to resurrect the attenuated potential. Alternatively, the charge carrier medium 1 is previously immersed in water, etc., to deposit onto the surface thereof charges opposite in polarity to those of the electrostatic latent image 2 generated by charging, thereby attenuating the surface potential. This makes any external access to the image information impossible. In reading the image information, a PET film 5 or the like is brought into close contact with the surface of the charge carrier medium 1, and is then peeled apart from that surface to remove the charges of the opposite polarity and thereby resurrect the image information for reading. This makes it possible to protect the image information against a third person's access thereto and provide an assured reproduction of the electrostatic latent image.
摘要:
The present invention relates to a method for forming an outline of an image. By this method, at first, an electrostatic latent image bearing member is charged and then irradiated to a negative image to form an electrostatic latent image. Thereafter, the irradiated member is re-charged with a scorotron charger while applying a voltage to a grid, said voltage being lower than the surface potential of the non-image portion of the latent image, being higher than the potential of the image portion of the latent image and being of the same porality as that of the charging. By this re-charging, in one embodiment, the outline portion of the image has lower potential than the other portion. Then, the outline portion of the image with lower potential is visualized with a reversal development by using a toner charged to a polarity same as the polarity of charging.Or in another embodiment, the outline portion of the image has higher potential than the other portion. Then, the outline portion of the image with high potential is visualized with a normal development by using a toner charged to a polarity opposite to the polarity of charging.
摘要:
A method for enhancing the contrast of a latent electrostatic image on a dielectric surface is disclosed which includes positioning a photoconductive electrode adjacent the dielectric surface; and applying an electrical potential between the photoconductive member and the dielectric surface, while irradiating selected portions of the photoconductive electrode, to cause electrical charge formation on selected portions of the dielectric surface corresponding to the selected photoconductive electrode portions. Thereafter, the applied electrical potential is reduced to essentially zero. In accordance with this invention, during such reduction to essentially zero potential, the entire surface of the photoconductive member is briefly flooded with light to obtain an improvement of the intensity and contrast of the latent electrostatic image formed on the dielectric surface.
摘要:
A discharging light quantity adjusting device includes a potential measurement controller that performs: a process of causing a first toner image forming process to charge an image holding member to a first potential and an electrometer to measure an electrostatic potential on the image holding member to obtain a first value, a process of causing a second toner image forming process to charge the image holding member to a second potential and removing a toner image formed by the second toner image forming process, and a process of causing a third toner image forming process to charge the image holding member to a third potential, and causing the electrometer to measure an electrostatic potential on the image holding member to obtain a second value; and a light quantity adjusting unit that adjusts a quantity of a discharging light based on the first and second values.
摘要:
A discharging method used in an image forming apparatus includes discharging, with an exposure device, an exposure range of the latent image bearer, and discharging, with a discharger, an area of the latent image bearer outside the exposure range and inside a developing range in a main scanning direction. The exposure range is inside the developing range in the main scanning direction. The discharging with the exposure device and the discharging with the discharger are performed when a rotation of the latent image bearer is stopped after a toner image is transferred from the latent image bearer.
摘要:
An image forming apparatus forms an image by exposing an image bearer on the basis of image data including at least one predetermined pattern. The image forming apparatus includes a processing device that sets an exposure amount of a plurality of exposure pixels. The predetermined pattern is constituted by the plurality of exposure pixels, and a peripheral region of the predetermined pattern in the image data is constituted by a plurality of non-exposure pixels. The processing device sets an exposure amount of an exposure pixel in a specific region that is adjacent to a boundary between the predetermined pattern and the peripheral region and is constituted by at least one exposure pixel in the predetermined pattern, and an exposure amount of an exposure pixel in a region other than the specific region in the predetermined pattern to values different from each other.
摘要:
An image forming apparatus includes an image bearing member; an image forming portion for forming a toner image on the image bearing member, the image forming portion being capable of forming an image to be formed on a recording material and forming a control image for controlling an image density at a position adjacent to the image to be formed on the recording material; an intermediary transfer member rotatable while carrying the toner image transferred from the image bearing member; a transfer member for forming a transfer portion where the toner image is to be transferred from the intermediary transfer member onto the recording material; an electrostatic cleaning member for electrostatically removing the toner deposited on the transfer member; a density detecting portion, provided upstream of the transfer member with respect to a rotational direction of the intermediary transfer member, for detecting a density of the control image transferred on the intermediary transfer member; an adjusting portion for adjusting an image forming condition of the image forming portion depending on an output of the density detecting portion; and a charge amount changing portion for adjusting a charge amount of the control image transferred onto the intermediary transfer member.