Abstract:
Salt formulations, which are resistant to moisture and cooking conditions, are described herein. The formulations provide particles of micronutrients and vitamins encapsulated within heat resistant pH-sensitive water-insoluble polymers, which are packaged within a salt shell. The pH-sensitive, water-insoluble, thermally stable materials stabilize the micronutrients, particularly at high temperatures, such as during food preparation and cooking, and release the micronutrients at the desired locations such as the stomach, small intestine, etc. Preferred pH-sensitive polymers release at a low pH, less than the pH present in the stomach. The particles can be used to deliver daily-recommended doses of micronutrients simultaneously with salt, eliminating the need for vitamin pills. This is particularly important in populations suffering from severe malnutrition.
Abstract:
Apparatus for use with substantially thermally sealed storage containers are described herein. These include an apparatus comprising a stored material module, a stabilizer unit, a stored material module cap and a central stabilizer unit. The apparatus also include a transportation stabilizer unit with dimensions corresponding to a substantially thermally sealed storage container with a flexible conduit. Methods and apparatus described herein relate to establishing and maintaining low gas pressure within a gas-sealed device fabricated from heat sensitive materials. Methods include transferring activated getters within the interior of an apparatus from regions fabricated from heat-resistant materials to interior regions of the gas-sealed device fabricated from heat-sensitive materials.
Abstract:
A substantially thermally sealed storage container includes an outer assembly, including one or more sections of ultra efficient insulation material substantially defining at least one thermally sealed storage region, and an inner assembly, including at least one heat sink unit within the at least one thermally sealed storage region. The inner assembly may include at least one stored material dispenser unit, wherein the at least one stored material dispenser unit includes one or more interlocks. The inner assembly may include a storage structure configured for receiving and storing at least one heat sink module and at least one stored material module. Substantially thermally sealed containers including flexible connectors joining an aperture in the exterior of the container to an aperture in a substantially thermally sealed storage region within the container are described. Systems including at least one substantially thermally sealed storage container and an information system are also described.
Abstract:
A food product sterilizer includes a food product source and a regenerative heat exchanger configured to receive a flow of food product from the food product source. The heat exchanger includes an input channel configured to receive a flow of food product to be sterilized. The heat exchanger also includes an output channel fluidly coupled to the input channel. The output channel is adjacent the input channel. The output channel and the input channel are configured to transfer heat between the two channels. The heat exchanger further includes an integrated heating section of at least a portion of the input channel or the output channel. The heating section is configured to heat the flow of food product.
Abstract:
Regulated cooling devices are described herein that are sized, shaped and calibrated for use with a substantially thermally sealed storage container. In some embodiments, the regulated cooling devices include a cooling region, an adiabatic region, a lid region, and an electronics unit attached to the lid region.
Abstract:
In some embodiments, a temperature-controlled container for use within a refrigeration device includes: one or more sections of insulation material substantially defining one or more walls of a temperature-controlled container, the temperature-controlled container including an internal region; a thermally-insulated partition dividing the internal region to form a storage region and a phase change material region internal to the container, the thermally-insulated partition including a conduit between the storage region and the phase change material region; a thermal control device within the conduit; an aperture within a section of the insulation material substantially defining the container, the aperture between the phase change material region internal to the container and an external surface of the container; and a unidirectional thermal conductor positioned within the aperture, the unidirectional thermal conductor configured to transmit heat in a direction from the phase change material region to the external surface of the container.
Abstract:
A pasteurization system includes a liquid inlet configured to receive a liquid to be pasteurized. The system also includes a pump coupled to the liquid inlet for pressurizing the liquid. Further, the system includes a counter flow heat exchanger coupled to the liquid inlet and the pump, the counterflow heat exchanger configured to heat the liquid to a predetermined temperature for at least a predetermined time and configured to exchange heat between a flow of liquid in a first direction in a first channel with the flow of liquid in a second direction opposite the first direction in a second channel. A heating section that heats the liquid flow is integrated into the heat exchanger and heats at least a portion of the first channel or the second channel.
Abstract:
In some embodiments, a refrigeration device includes: walls substantially forming a liquid-impermeable container configured to hold phase change material internal to a refrigeration device; at least one active refrigeration unit including a set of evaporator coils positioned within an interior of the liquid-impermeable container; walls substantially forming a storage region; and a heat transfer system including a first group of vapor-impermeable structures with a hollow interior connected to form a condenser in thermal contact with the walls substantially forming a liquid-impermeable container, a second group of vapor-impermeable structures with a hollow interior connected to form an evaporator in thermal contact with the walls substantially forming a storage region, and a connector with a hollow interior affixed to both the condenser and the evaporator, the connector forming a liquid and vapor flow path between the hollow interior of the condenser and the hollow interior of the evaporator.
Abstract:
Emulsion-based and micromolded ("MM") or three dimensional printed ("3DP") polymeric formulations for single injection of antigen, preferably releasing at two or more time periods, have been developed. Formulations are preferably formed of biocompatible, biodegradable polymers. Discrete regions encapsulating antigen, alone or in combination with other antigens, adjuvants, stabilizers, and release modifiers, are present in the formulations. Antigen is preferably present in excipient at the time of administration, or on the surface of the formulation, for immediate release, and incorporated within the formulation for release at ten to 45 days after initial release of antigen, optionally at ten to 90 day intervals for release of antigen in one or more additional time periods. Antigen may be stabilized through the use of stabilizing agents such as trehalose glass. In a preferred embodiment for immunization against polio, antigen is released at the time of administration, and two, four and six months thereafter.
Abstract:
In some embodiments, a regulated thermal transfer device for a storage container includes: a phase change material unit, the phase change material unit including one or more walls surrounding a phase-change material region, and an aperture in the one or more walls; a heat pipe with a first end positioned within the phase change material unit, and a second end; a thermoelectric unit thermally connected to the second end of the heat pipe; a heat sink connected to the thermoelectric unit, and positioned to radiate heat away from the thermoelectric unit; and an electronic controller operably connected to the thermoelectric unit; wherein the regulated thermal transfer device is of a size and shape to be positioned so that the phase change material unit is within a storage region of a temperature-stabilized storage container, and the thermoelectric unit is positioned adjacent to an external surface of the temperature-stabilized storage container.