Abstract:
Das vorgeschlagene Verfahren zur kontaktfreien Ermittlung einer Temperatur einer Oberfläche (22), insbesondere zur kontaktfreien Ermittlung einer Temperaturverteilung einer Oberfläche (22), geht aus von einem Infrarot-Messsystem (10, 10a), das zumindest aufweist: ein Infrarot-Detektorarray (36) mit einem Detektorarray-Substrat (72). Erfindungsgemäß - sind zumindest eine Referenzpixel (65) und Blindpixel (64) vorgesehen, die für Infrarotstrahlung im Wesentlichen unempfindlich sind, wobei die erste thermische Wärmeleitfähigkeit λ RP (123) des Referenzpixels und die dritte thermische Wärmeleitfähigkeit λ BΡ (122) des Blindpixels jeweils grösser sind als die zweite thermische Wärmeleitfähigkeit λ ΜΡ (120) des Messpixels, und - werden Temperaturmesswerte T MP (67) bestimmt, die von einem Referenzsignal U RP des zumindest einen Referenzpixels (65) unabhängig sind, in dem jeweils ein Temperaturmesswert T MP,rel 1 (66) eines ersten Messpixels (62) und ein Temperaturmesswert Τ ΒΡ,rel 1 (68) eines ersten Blindpixels (64) voneinander subtrahiert werden ( T MP = T MP-rel 1 - T BP , rel 1 ), wobei der Temperaturmesswert T MP-rel 1 (66) und der Temperaturmesswert Τ ΒΡ,rel 1 (68) unter Verwendung eines Referenzsignals U RP desselben Referenzpixels (65) ermittelt werden, - werden Temperaturmesswerte T BP (69) bestimmt, die von dem Referenzsignal U RP des zumindest einen Referenzpixels (65) unabhängig sind, indem jeweils ein Temperaturmesswert Τ ΒΡ,rel 1 (68) eines ersten Blindpixels (64) und ein Temperaturmesswert Τ ΒΡ,rel 2 (68) eines zweiten Blindpixels (64) voneinander subtrahiert werden ( T BP = T BP,rel 1 - Τ ΒΡ,rel 2 ), wobei der Temperaturmesswert T BP,rel 1 (68) und der Temperaturmesswert Τ ΒΡ,rel 2 (68) unter Verwendung eines Referenzsignals U RP desselben Referenzpixels (65) ermittelt werden; werden Temperaturmesswerte T MP (67) um jeweils Pixelzugehörige Temperatur-Driftkomponenten T drift (46) korrigiert, wobei die Temperatur-Driftkomponenten T drift (46) unter Verwendung von Temperaturmesswerten T BP (69) und/oder T MP (67) bestimmt werden. Ferner wird ein mit dem Verfahren betriebenes Infrarot-Messsystem (10, 10a) vorgeschlagen.
Abstract:
A vehicle access system includes: an infrared detector assembly for detecting an object within a sensing region of the infrared detector assembly; at least one controller operatively connected to the infrared detector assembly, the at least one controller operative (i) to determine from inputs from the infrared detector assembly if a detected object exhibits a predefined gesture and, if the detected object exhibits a predefined gesture, (ii) to direct the execution of one or more pre-defined vehicle commands; and a plurality of lights operatively connected to the at least one controller, the plurality of lights selectively illuminable to produce visible light in one or more colors, wherein one or more of the plurality lights (i) are selectively illuminated by the at least one controller to visibly indicate the detected presence of an object within the sensing region by the infrared detector assembly, and (ii) are selectively illuminated by the at least one controller to visibly indicate that the detected object exhibits a predefined gesture.
Abstract:
Die vorliegende Erfindung schafft einen Thermosensor und ein Verfahren zur Herstellung eines solchen Thermosensors mit geringem Signal-zu-Rauschverhältnis bei relativ hoher Signalstärke. Hierzu wird ein thermoelektrischer Generator mit einem Feldeffekttransistor und einer Diode kombiniert. Der Thermosensor eignet sich dabei aufgrund seiner integrierten Diode und der damit verbundenen Sperrwirkung für eine kostengünstige und effiziente Ausgestaltung von bildgebenden Sensorarrays zur Wandlung von Wärmestrahlung in elektrische Signale.
Abstract:
A superconducting thermal detector (bolometer) of THz (sub-millimeter) wave radiation based on sensing the change in the amplitude or phase of a resonator circuit, consisting of a capacitor (Csh) and a superconducting temperature dependent inductor (2) where the said inductor is thermally isolated from the heat bath (chip substrate (3)) by micro-suspensions (11). The bolometer design includes a thin film inductor located on the membrane, a single or/and multi-layered thin film capacitor, and a thin film absorber of incoming radiation. The bolometer design can also include a lithographic antenna with antenna termination and/or a back reflector beneath the membrane for optimal wavelength detection by the resonance circuit. The superconducting thermal detector (bolometer) and arrays of these detectors operate in a temperature range from 1 Kelvin to 10 Kelvin.
Abstract:
이동통신단말기를 수납하는 수납 케이스는, 적어도 일부가 외면에 노출되어 온도를 측정하며, 측정된 온도에 기초하여 아날로그 신호를 출력하는 온도 센싱부, 아날로그 신호를 제1 디지털 신호로 변환하는 AD 컨버터부, 미리 설정된 온도 보정 알고리즘에 따라 제1 디지털 신호를 보정하여, 보정된 온도를 나타내는 제2 디지털 신호를 출력하는 신호 보정부 및 제2 디지털 신호를 소정의 대역폭을 갖는 신호 채널을 통해, 이동통신단말기의 신호 수신부에 대해 무선 송신하는 신호 송신부를 포함한다.
Abstract:
A system configured to collect sensor data and compare the sensor data to a first template profile comprising data indicative of an approach of a user or compare the sensor data to a second template profile comprising data indicative of a departure of a user, or a combination thereof to determine whether the sensor data indicates the approach of a user or a departure of a user.
Abstract:
Temperature monitoring systems for data centers include a plurality of ceiling-mounted infrared sensor arrays. Each infrared sensor array includes a two-dimensional array of infrared emission sensors, and at least some of the infrared emission sensors have field of view patterns that project onto aisle faces of equipment racks that are mounted in rows in the data center. These systems may further include a controller that is remote from at least some of the infrared sensor arrays and that is in communications with the infrared sensor arrays, the controller configured to provide a two-dimensional thermal map of the aisle faces of the equipment racks based at least in part on temperature data received from the infrared sensor arrays.
Abstract:
A method and apparatus for processing a semiconductor substrate is described. The apparatus is a process chamber having an optically transparent upper dome and lower dome. Vacuum is maintained in the process chamber during processing. The upper dome is thermally controlled by flowing a thermal control fluid along the upper dome outside the processing region. Thermal lamps are positioned proximate the lower dome, and thermal sensors are disposed among the lamps. The lamps are powered in zones, and a controller adjusts power to the lamp zones based on data received from the thermal sensors.