Abstract:
A method including obtaining a measurement and/or simulation result of a pattern after being processed by an etch tool of a patterning system, determining a patterning error due to an etch loading effect based on the measurement and/or simulation result, and creating, by a computer system, modification information for modifying a patterning device and/or for adjusting a modification apparatus upstream in the patterning system from the etch tool based on the patterning error, wherein the patterning error is converted to a correctable error and/or reduced to a certain range, when the patterning device is modified according to the modification information and/or the modification apparatus is adjusted according to the modification information.
Abstract:
The invention relates to a projection exposure apparatus for EUV microlithography comprising an illumination system (1) for illuminating a pattern and a projection objective (2) for imaging the pattern onto a light-sensitive substrate (5). The projection objective (2) has a pupil plane (30) with an obscuration. The illumination system (1) generates light with an angular distribution. The angular distribution has an illumination pole (35, 36) which extends over a range of polar angles and a range of azimuth angles and within which the light intensity is greater than an illumination pole minimum value. From the illumination pole (35, 36) toward large polar angles a dark zone (41, 42) is excluded within which the light intensity is less than the illumination pole minimum value, and which has in regions a form corresponding to the form of the obscuration of the pupil plane (30).
Abstract:
The technology disclosed relates to a partially coherent illuminators.In particular, it relates to a partially coherent illuminator that directs laser radiation across multiple areas of an illumination pupil. In some circumstances, this reduces spatial and/or temporal coherence of the laser radiation. It must be used with a continuous laser to provide partially coherent illumination from a coherent laser. It can be combined with a workpiece tracker that effectively freezes the workpiece and extends the time that laser radiation can be applied to expose a pattern stamp on the work piece or, it can be used with a stepper platform, without a tracker.A dynamically controllable aperture architecture is a by product of the technology disclosed.
Abstract:
A system for processing a multi-device panel, comprising a substrate having front and rear surfaces, a first array of device regions located on the front surface and a second array of device regions on the rear surface, by vector direct-write laser ablation, comprising a first processing station comprising a pair of opposedly-mounted processing heads, each processing head comprising a laser beam delivery apparatus comprising a laser beam scanner and a lens unit, and a distance measurement means, mounting means for mounting the panel between the processing heads of the first processing station such that the relative position of the panel and the first processing station can be adjusted so that the processing heads are brought into alignment with selected front-surface and rear-surface device regions to be processed, wherein each processing head is operable to make an estimate of the distance between the lens unit and the surface of the device region to be processed using the distance measurement means, control the focus the lens unit dependent on said estimate and vector direct-write the device region.
Abstract:
A first high resolution pattern is defined in a first layer of photoresist on a work surface and portions of the first layer are removed to expose the pattern on the work surface. The exposed portions of the work surface and the remaining portions of the first layer are then covered by a second layer of photoresist. A second lower resolution pattern is then defined in the second layer and portions of the second layer are removed to expose on the work surface a third pattern that is a subset of the first pattern. Standard (non-custom) masks may be used to define the first pattern while custom but lower resolution masks are used to define the second pattern.
Abstract:
The present invention is directed towards a method and a system of patterning first and second opposed sides of a substrate. The method and system may employ a mold assembly and obtaining a desired spatial relationship between the first and second opposed sides of the substrate and the mold assembly. In a further embodiment, the method and system may employ a first and a second mold assembly.
Abstract:
Patterns are written on workpieces, such as, glass sheets and/or plastic sheets used in, for example, electronic display devices such as LCDs. The workpiece may be larger than about 1500 mm may be used. An optical writing head with a plurality of writing units may be used. The workpiece and the writing head may be moved relative to one another to provide oblique writing.
Abstract:
A semiconductor device and a method for fabricating a semiconductor device with reduced line bending is provided. The method can include forming a first layer and depositing a photoresist layer on the first layer. The photoresist layer can be patterned, such that the patterning comprises at least one support feature (271) disposed adjacent to an outside of a corner feature (250).