Abstract:
The invention relates to a fibre which is used as a component of a composite material. The fibre contains at least one part non-ferrous metallic, amorphic or ceramic material, in particular, at least one part ceramic material which is resistant to high temperatures. The shape of said fibre is different from the shape of a cylinder. The invention also relates to said type of composite material and a method for the production thereof.
Abstract:
The invention relates to a system and method for continuous production of ceramic non-wovens, essentially comprising a mixing device for the production of a suspension consisting of ceramic powder, aqueous aminoxide and cellulose. The suspension is produced in batches or in a continuous manner and can occur in one or several steps by adding all components or the individual components thereof. The invention also comprises a device for concentrating the solution made of ceramic powder, aqueous aminoxide and cellulose thus produced. The mixture is sheered in an intensively mixed heated state in said device and transported with the evaporation of water until a precisely defined amount of water is evaporated an a suspension of ceramic powder in a deformable solution of cellulose in aqueous aminoxide is obtained. The invention also comprises a device which is connected to the above-mentioned concentration device and which is used to process the deformable ceramic cellulose suspension to form ceramic green fibers. Said device enables ceramic green fibers to be formed and, optionally, a green fiber non-woven. A system can also be integrated, enabling the green fiber non-woven to be pyrolyzed and sintered or a non-woven made of ceramic green fibers to be pyrolyzed and sintered. The ceramic non-wovens thus obtained can be used in the chemical, power-generating, recycling and motor industry, in biotechnology and in medicine. Said non-wovens can also be used in catalyzer technology for use as catalyzers for internal combustion engines or in chemical reactors.
Abstract:
Anlage und Verfahren zur kontinuierlichen Herstellung keramischer Vliessstoffe, welche im wesentlichen eine Mischvorrichtung zur Herstellung einer Suspension von Keramikpulver, wässrigem Aminoxid und Cellulose aufweist, wobei die Suspensionsherstellung chargenweise oder in kontinuierlicher Art und Weise geschieht und in einem oder mehreren Schritten durch Zugabe aller oder einzelner Bestandteile erfolgen kann, die weiterhin eine Vorrichtung zur Aufkonzentrierung der hergestellten Suspension aus Keramikpulver, wässrigem Aminoxid und Cellulose beinhaltet, in welcher Vorrichtung die Suspension solange unter Erwärmung intensiv gemischt geschert und unter Abdampfen von Wasser transportiert wird, bis eine genau definierte Menge an Wasser abgedampft und eine Suspension von Keramikpulver in einer verformbaren Lösung der Cellulose in wässrigem Aminoxid entsteht, welche weiterhin eine mit der vorherbeschriebenen Vorrichtung verbundene Vorrichtung beinhaltet, in welcher die verformbare Keramik-Celluloselösungssuspension zu keramischen Grünfasern verarbeitet wird und diese Vorrichtung die Bildung von keramischen Grünfasern und gegebenenfalls eines Grünfaservlieses gestattet sowie eine Anlage integrieren kann, in welcher das gebildete Grünfaservlies pyrolysiert und gesintert wird bzw. in welcher aus keramischen Grünfasern ein Vlies gebildet, pyrolysiert und gesintert wird. Die erhaltenen Keramikvliese können in den Bereichen der chemischen, energieerzeugenden sowie -recycelnden und Kraftfahrzeugindustrie, der Biotechnologie und Medizintechnik sowie in der Katalysatorentechnik wie Verbrennungsmotorkatalysator oder in chemischen Reaktoren verwendet werden.
Abstract:
An alumina fiber aggregate which consists essentially of alumina short fibers having an average fiber diameter of 4.0 to 10.0 μm and a minimum fiber diameter of 3.0 μm or more; and (2) a method for producing the alumina fiber aggregate which comprises spinning a spinning solution containing basic aluminum chloride, a silicon compound, an organic polymer and water by the blowing method, and firing the resulting alumina short fiber precursor aggregate, characterized in that use is made of a spinning solution having a ratio of aluminum and silicon in terms of the weight ratio of Al 2 O 3 and SiO 2 of 99:1 to 65:35, a concentration of the basic aluminum chloride of 180 to 200 g/L, and a concentration of the organic polymer of 20 to 40 g/L. The alumina fiber aggregate is composed of alumina short fibers having an increased diameter and thus is suppressed in the scatter of the alumina short fibers.
Abstract translation:一种氧化铝纤维聚集体,其基本上由平均纤维直径为4.0至10.0μm,最小纤维直径为3.0μm或更大的氧化铝短纤维组成; 和(2)一种氧化铝纤维聚集体的制造方法,其特征在于,通过吹塑法将含有碱性氯化铝,硅化合物,有机聚合物和水的纺丝溶液进行纺丝,烧成所得的氧化铝短纤维前体骨料,其特征在于, 使用具有铝和硅的比例的纺丝溶液,以Al 2 S 3 O 3 / SiO 2的重量比和SiO 2的重量比为2 sb> 99:1〜65:35,碱性氯化铝的浓度为180〜200g / L,有机聚合物的浓度为20〜40g / L。 氧化铝纤维聚集体由直径增加的氧化铝短纤维构成,因此抑制了氧化铝短纤维的散射。
Abstract:
A continuous sheet (W) of alumina fiber precursor formed from a compound-containing spinning solution is continuously fed into a high-temperature heating furnace, and is heat treated while being conveyed in one direction by a plurality of conveying mechanisms (2, 3) disposed in the heating furnace. During the heat treating, the conveying mechanisms are decelerated in the conveying direction in conformity with the heat shrinkage of the continuous sheet (W), whereby the wear-out of fibers in the alumina fiber precursor is reduced to obtain a continuous alumina fiber blanket having uniform thickness and bulk density and being excellent in strength.
Abstract:
A zirconia-containing inorganic fiber, characterized in that it comprises a composite oxide phase comprising a first phase having a silica component or silicon carbide as a main component and a second phase comprising zirconia, and the proportion of zirconia is gradually increased toward the surface of the fiber; and a method for producing the inorganic fiber. The zirconia-containing inorganic fiber is excellent in the resistance to oxidation and an alkali and exhibits excellent catalyst function and/or catalyst carrying function, and further has an improved strength.
Abstract:
A process utilizing a supported metal catalyst, a volatile species source, and a carbon source has been developed to produce carbide nanorods with diameters of less than about 100 nm and aspect ratios of 10 to 1000. The volatile species source, carbon source, and supported metal catalyst can be used to produce carbide nanorods in single run, batch, and continuous reactors under relatively mild conditions. The method employs a simple catalytic process involving readily available starting materials.
Abstract:
The pool (11) to be filamented is liquefied by heating in a crucible (10). A disk (15) having an edge (16) immersed in the molten pool (11) rotates at high velocity and drives the pool outwards in the form of a ribbon (7) which breaks up into pieces forming the required particles. The portion of the pool in contact with the disk (15) is constantly replenished and, owing to the use of heating means (30), has sufficient fluidity to satisfy the conditions for extraction, the molten pool (11) being continuously moved horizontally with respect to the disk (15).