Abstract:
A solid state, laser light control device (20, 30) and material (10), and methods of producing same. The device (20, 30) and material (10) consist essentially of a host material (14) which contains: a dopant species (16) at a first valence state (a), the concentration of which increases with distance from the surface (18); and the same dopant species (16) at a second valence state (b), the concentration which decreases with distance from the surface (18). The method comprises the steps of: obtaining a doped solid state material (14); exposing the solid state material (14) to elevated temperature, for a period of time, in an oxidizing or reducing atmosphere. The elevated temperature and time of exposure are selected to change the valence state (a) of the dopant (16) in direct proportion to distance from the surface (18) of the solid state material (16). What is thereby produced is a solid state device (20, 30) in which the concentration of the dopant 16 at the second valence state (b) decreases with radius, the concentration of the dopant (16) at the first valence state (a) increases with radius, and the sum of these concentrations remains constant.
Abstract:
A solid state pump cavity comprising a laser rod encased by diffusion bonding inside an outer cladding. The outer cladding provides the ability to efficiently conduct heat away from the laser rod. The outer cladding is also configured to absorb spontaneous laser radiation that would otherwise be re-amplified by the laser rod. Diffusion bonding of the outer cladding to the laser rod forms a seamless optical boundary between the outer cladding and the laser rod. An alternative embodiment of the pump cavity comprises multiple segments of laser rod and outer cladding assemblies coupled together with undoped sections that are diffusion bonded to the ends of the laser rod and outer cladding assemblies.
Abstract:
The invention is directed to optical devices comprising a solid-state structured glass substrate having at least one waveguide incorporated therein, particularly waveguides and lasers incorporating such structure. The invention is also directed to methods for modifying such devices and their properties. The waveguides and lasers of the invention provide advantageous high power and increased slope efficiency and find use, for example, in telecommunications applications.
Abstract:
Um bei einer Vorrichtung {1} zum optischen Pumpen eines stab- oder slabförmigen, laseraktiven Festkörpers (2} mittels Pumplichts {3} I das stirnseitig in den Festkörper {2} eingekoppelt und durch Reflexion verteilt wird, das eingekoppelte Pumplicht {8} möglichst homogen im Festkörper (2} zu verteilen, ist der Festkörper {2} von einem Reflektor {5} umgeben und tritt durch die Mantelfläche {7} des Festkörpers {2} austretendes Pumplicht {10} diffus verteilt zurück in den Festkorper {2} ein.
Abstract:
The inventive module of a light-pumped laser comprises light pump sources, a solid-state active element which is embodied in the form of a plate and provided with a couple of first opposite side faces, the distance therebetween defining the width of the active element for passing a pump radiation therethrough from the pump sources to the active element; a couple of second opposite side faces, the distance therebetween defining the thickness of the active element, which faces are embodied in the plane-parallel manner in order to direct a beam of formed laser radiation in such a way that it enables said beam to pass along the length of the active element in a zigzag manner, undergoing a total internal reflection from the couple of second side faces; a couple of end faces, the distance therebetween defining the length of the active element, and also heat-spreading devices which have a thermal contact with each second face in order to remove heat from the active element. In order to reduce radiation divergence, increase the laser-excitation efficiency and to increase the heat resistance of the active element, said element is embodied in such a way that the width thereof is greater than the thickness thereof. For the purpose of the pump radiation, the first side faces are embodied in a transparent manner. The arrangement of the light pump sources with respect to the active element and the directional diagram thereof are such that at least one greater part of the pump radiation is diffused inside the active element along the width thereof in zigzag manner by means of the total internal reflection from the second side faces.
Abstract:
The invention relates to a pump chamber (2), in which laser active medium is stored. The pump light is introduced into said pump chamber (2), by means of one or several fluid light guides (12), whereby the fluid used as a light guide is used as coolant for the laser active medium (1).
Abstract:
Optical structures and method for producing tunable waveguide lasers (202). In one embodiment, a waveguide is defined within a glass substrate doped with a rare-earth element or elements by ion diffusion. Feedback elements such as mirrors (240) or reflection gratings (230) in the waveguide further define a laser-resonator cavity so that laser light is output from the waveguide when pumped optically or otherwise. Means are disclosed for varying the wavelengths reflected by the reflection gratings and varying the effective length of the resonator cavity to thereby tune the laser to a selected wavelength. Apparatus and method for integrating rare-earth doped lasers and optics on glass substrates. The invention includes a laser component formed from a glass substrate doped with an optically active lanthanides species with a plurality of waveguides defined by channels within the substrate. The laser component may constitute a monolithic array of individual waveguides in which the waveguides of the array form laser resonator cavities with differing resonance characteristics. The channels defining the waveguides are created by exposing a surface of the substrate to an ion-exchange solvent through a mask layer having a plurality of line apertures corresponding to the channels which are to be formed.
Abstract:
The invention concerns a method for optical pumping of a light-amplifying medium and an optical pumping module for implementing said method. The invention is characterised in that it consists in using at least a light source (40) for pumping the amplifying medium (24) and in enclosing said medium with a reflector (20) whereof the wall (22) reflects said diffused light; emitting the beam (18) directly coming from the source towards the wall so that it is subjected to the diffused reflections and placing the amplifying medium outside said beam so that it may be pumped only by the light diffused by the wall.
Abstract:
Optical structures and method for producing tunable waveguide lasers (202). In one embodiment, a waveguide is defined within a glass substrate doped with a rare-earth element or elements by ion diffusion. Feedback elements such as mirrors (240) or reflection gratings (230) in the waveguide further define a laser-resonator cavity so that laser light is output from the waveguide when pumped optically or otherwise. Means are disclosed for varying the wavelengths reflected by the reflection gratings and varying the effective length of the resonator cavity to thereby tune the laser to a selected wavelength. Apparatus and method for integrating rare-earth doped lasers and optics on glass substrates. The invention includes a laser component formed from a glass substrate doped with an optically active lanthanides species with a plurality of waveguides defined by channels within the substrate. The laser component may constitute a monolithic array of individual waveguides in which the waveguides of the array form laser resonator cavities with differing resonance characteristics. The channels defining the waveguides are created by exposing a surface of the substrate to an ion-exchange solvent through a mask layer having a plurality of line apertures corresponding to the channels which are to be formed.
Abstract:
Apparatus and method for integrating rare-earth doped lasers and optics on glass substrates. An optical (e.g., laser) component formed from a glass substrate doped with an optically active lanthanides species with a plurality of waveguides defined by channels within the substrate. The laser component may constitute a monolithic array of individual waveguides in which the waveguides of the array form laser resonator cavities with differing resonance characteristics. The channels defining the waveguides are created by exposing a surface of the substrate to an ion-exchange solvent through a mask layer having a plurality of line apertures corresponding to the channels which are to be formed. Another aspect is directed toward pumping the laser. A laser component formed from a glass substrate doped with a laser species and having one or more substrate waveguides defined therein, and a superstrate waveguide cavity, or cladding, positioned adjacent the substrate waveguide for supplying the latter with pump light.