Abstract:
Systems and methods are disclosed for simulating or optimizing hemodialysis access. One method includes receiving a patient-specific anatomic model of a patient's vasculature; computing a pre-treatment hemodynamic characteristic of a pre-treatment geometry of a portion of the anatomic model; simulating a post-treatment geometry of a vascular access in the portion of the anatomic model; computing a post-treatment hemodynamic characteristic of the post-treatment geometry of the portion of the anatomic model having the vascular access; and generating a representation of the pre-treatment hemodynamic characteristic or the post-treatment hemodynamic characteristic.
Abstract:
Systems and methods are disclosed for assessing a risk of disease. One method includes obtaining an anatomic model associated with a target anatomy; modeling, using a processor, an injection of one or more virtual contrast agents into the anatomic model; performing a simulation of flow of blood and the one or more virtual contrast agents through the anatomic model; and computing one or more characteristics of concentration associated with the one or more virtual contrast agents at one or more locations in the anatomic model based on the simulation.
Abstract:
Embodiments include methods of identifying a personalized cardiovascular device based on patient-specific geometrical information, the method comprising acquiring an anatomical model of at least part of the patient's vascular system; performing, using a processor, one or more of geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis on the anatomical model; and identifying, using the processor, a personalized cardiovascular device for the patient, based on results of one or more of the geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis of anatomical model.
Abstract:
Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
Abstract:
Systems and methods are disclosed for identifying and modeling unresolved vessels, and the effects thereof, in image-based patient-specific hemodynamic models. One method includes: receiving, in an electronic storage medium, one or more patient-specific anatomical models representing at least a vessel of a patient; determining, using a processor, the values and characteristics of one or more patient-specific morphometric features in the one or more patient-specific anatomical models; modifying the patient-specific anatomical model using the determined patient-specific morphometric features; and outputting, one or more of, a modified patient-specific anatomical model or a patient-specific morphometric feature to an electronic storage medium or display.
Abstract:
Systems and methods are disclosed for assessing organ and/or tissue transplantation by estimating blood flow through a virtual transplant model by receiving a patient-specific anatomical model of the intended transplant recipient; receiving a patient-specific anatomical model of the intended transplant donor, the model including the vasculature of the organ or tissue that is intended to be transplanted to the recipient; constructing a unified model of the connected system post transplantation, the connected system including the transplanted organ or tissue from the intended transplant donor and the vascular system of the intended transplant recipient; receiving one or more blood flow characteristics of the connected system; assessing the suitability for an actual organ or tissue transplantation using the received blood flow characteristics; and outputting the assessment into an electronic storage medium or display.
Abstract:
Systems and methods are disclosed herein for anatomical modeling using information obtained during a medical procedure, whereby an initial anatomical model is generated or obtained, a correspondence is determined between the initial model and additional data and/or measurements from an invasive or noninvasive procedure, and, if a discrepancy is found between the initial model and the additional data, the anatomical model is updated to incorporate the additional data and reduce the discrepancy.
Abstract:
Computer-implemented methods are disclosed for estimating values of hemodynamic forces acting on plaque or lesions. One method includes: receiving one or more patient-specific parameters of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion; constructing a patient-specific geometric model of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion, using the received one or more patient-specific parameters; estimating, using one or more processors, the values of hemodynamic forces at one or more points on the patient-specific geometric model, using the patient-specific parameters and geometric model by measuring, deriving, or obtaining one or more of a pressure gradient and a radius gradient; and outputting the estimated values of hemodynamic forces to an electronic storage medium. Systems and computer readable media for executing these methods are also disclosed.
Abstract:
Systems and methods are disclosed for using patient-specific anatomical models and physiological parameters to predict viability of a target tissue or vessel to guide diagnosis or treatment of cardiovascular disease. One method includes: receiving a patient-specific vessel model and a patient-specific tissue model of a patient anatomy; receiving one or more patient-specific physiological parameters (e.g. blood flow, anatomical characteristics, etc.) for one or more physiological states; estimating a viability characteristic of the patient-specific tissue or vessel model (e.g., via a trained machine learning algorithm), using the patient-specific physiological parameters; and outputting the viability characteristic to an electronic storage medium or display.
Abstract:
Systems and methods are disclosed for determining a patient risk assessment or treatment plan based on emboli dislodgement and destination. One method includes receiving a patient-specific anatomic model generated from patient- specific imaging of at least a portion of a patient's vasculature; determining or receiving a location of interest in the patient-specific anatomic model of the patient's vasculature; using a computing processor for calculating blood flow through the patient-specific anatomic model to determine blood flow characteristics through at least the portion of the patient's vasculature of the patient-specific anatomic model downstream from the location of interest; and using a computing processor for particle tracking through the simulated blood flow to determine a destination probability of an embolus originating from the location of interest in the patient- specific anatomic model, based on the determined blood flow characteristics.