Abstract:
Systems and methods are disclosed for simulating or optimizing hemodialysis access. One method includes receiving a patient-specific anatomic model of a patient's vasculature; computing a pre-treatment hemodynamic characteristic of a pre-treatment geometry of a portion of the anatomic model; simulating a post-treatment geometry of a vascular access in the portion of the anatomic model; computing a post-treatment hemodynamic characteristic of the post-treatment geometry of the portion of the anatomic model having the vascular access; and generating a representation of the pre-treatment hemodynamic characteristic or the post-treatment hemodynamic characteristic.
Abstract:
Systems and methods are disclosed for evaluating a patient with vascular disease. One method includes receiving patient-specific data regarding a geometry of the patient's vasculature; creating an anatomic model representing at least a portion of a location of disease in the patient's vasculature based on the received patient-specific data; identifying one or more changes in geometry of the anatomic model based on a modeled progression or regression of disease at the location; calculating one or more values of a blood flow characteristic within the patient's vasculature using a computational model based on the identified one or more changes in geometry of the anatomic model; and generating an electronic graphical display of a relationship between the one or more values of the calculated blood flow characteristic and the identified one or more changes in geometry of the anatomic model.
Abstract:
Systems and methods are disclosed for providing personalized estimates of bioheat transfer through a patient's body or a portion of a patient's body. One method includes receiving a patient-specific vascular model of a patient's anatomy, including at least one vessel of the patient; receiving a patient-specific tissue model including at least a portion of tissue of the patient's anatomy; receiving an estimate of heat content of the portion of tissue of the patient-specific tissue model or tissue surrounding the portion of tissue; determining an estimate of heat distribution of the portion of tissue of the patient-specific tissue model or tissue surrounding the portion of tissue based on the vascular model, the tissue model, or the received estimate of heat content; and output the determined estimate of heat distribution to a storage medium or user display.
Abstract:
Systems and methods are disclosed for using vessel reactivity to guide diagnosis or treatment for cardiovascular disease. One method includes receiving a patient-specific vascular model of a patient's anatomy, including at least one vessel of the patient; determining, by measurement or estimation, a first vessel size at one or more locations of a vessel of the patient-specific vascular model at a first physiological state; determining a second vessel size at the one or more locations of the vessel of the patient-specific vascular model at a second physiological state using a simulation or learned information; comparing the first vessel size to the corresponding second vessel size; and estimating a characteristic of the vessel of the patient-specific vascular model based on the comparison.
Abstract:
Systems and methods are disclosed herein for anatomical modeling using information obtained during a medical procedure, whereby an initial anatomical model is generated or obtained, a correspondence is determined between the initial model and additional data and/or measurements from an invasive or noninvasive procedure, and, if a discrepancy is found between the initial model and the additional data, the anatomical model is updated to incorporate the additional data and reduce the discrepancy.
Abstract:
Systems and methods are disclosed for determining a patient risk assessment or treatment plan based on emboli dislodgement and destination. One method includes receiving a patient-specific anatomic model generated from patient- specific imaging of at least a portion of a patient's vasculature; determining or receiving a location of interest in the patient-specific anatomic model of the patient's vasculature; using a computing processor for calculating blood flow through the patient-specific anatomic model to determine blood flow characteristics through at least the portion of the patient's vasculature of the patient-specific anatomic model downstream from the location of interest; and using a computing processor for particle tracking through the simulated blood flow to determine a destination probability of an embolus originating from the location of interest in the patient- specific anatomic model, based on the determined blood flow characteristics.
Abstract:
Systems and methods are disclosed for simulation of occluded arteries and/or optimization of occlusion-based treatments. One method includes obtaining a patient-specific anatomic model of a patient's vasculature; obtaining an initial computational model of blood flow through the patient's vasculature based on the patient-specific anatomic model; obtaining a post-treatment computational model by modifying portions of the initial computational model based on an occlusion-based treatment; generating a pre-treatment blood flow characteristic using the initial computational model or computing a post-treatment blood flow using the post- treatment computational model; and outputting a representation of the pre-treatment blood flow characteristic or the post-treatment blood flow characteristic.