Abstract:
An aircraft (12) adapted for flight in helicopter mode with its longitudinal axis oriented generally vertically and in airplane mode with its longitudinal axis oriented generally horizontally is provided with the capability of launching and landing with the tail end (202) directed skyward. The invention also includes improvements to the controllability and efficiency of aircraft (12) in helicopter mode provided by the stabilizer wings (24, 26, 28) and relative rotation of the fuselage section (14) about the aircract's longitudinal axis. The aircraft (12) may have an elongate boom (83) for engagement with a base structure (81). The base structure (81) may be attached to a building, a trailer transporter, a ship or some other structure.
Abstract:
A propulsion system for an aircraft may include two coaxial propellers to operate in two different flight conditions. Each propeller may be attached to a driveshaft via corresponding one-way devices that allow each propeller to be driven in one direction but spin freely in the other direction. A reversible motor may selectively rotate the driveshaft in one direction to cause one propeller to operate while the other spins freely. For example, one propeller may be operated for one flight condition (such as vertical lift) and the other propeller may be operated for another flight condition (such as horizontal flight). Another propulsion system may include a propeller, a one-way bearing, a motor, and a generator. The one-way bearing may allow the motor to drive the propeller in one direction and to spin freely in the other direction to drive the generator with incoming airflow during a gliding phase of flight.
Abstract:
A technique is directed to operating an unmanned aerial vehicle (UAV) having a fuselage defining a flight direction of the UAV and wing-plate assemblies that propel the UAV in the flight direction defined by the fuselage. The technique involves providing, while the flight direction defined by fuselage of the UAV points vertically from a takeoff location on the ground, thrust from propulsion units of the wing plate assemblies to fly the UAV along a vertical takeoff path. The technique further involves maneuvering, after the UAV flies along the vertical takeoff path, the UAV to align the flight direction along a horizontal flight path that is perpendicular to the vertical takeoff path. The technique further involves providing, after the UAV flies along the horizontal flight path, thrust from the propulsion units of the wing-plate assemblies to land the UAV along a vertical landing path.
Abstract:
An aircraft includes a fuselage, a wing, a ducted fan and a controller. The wing and the ducted fan are coupled to the fuselage. The controller is operable to control the aircraft in a vertical flight mode, a horizontal flight more, and transition the aircraft from the vertical flight mode to the horizontal flight mode.
Abstract:
One example embodiment includes a vertical takeoff and landing (VTOL) unmanned aerial vehicle (UAV)(12). The VTOL UAV (12) includes a flight control system configured to provide avionic control of the VTOL UAV (12) in a hover mode and in a level-flight mode. The VTOL UAV (12) also includes a body (18) encapsulating an engine and the flight control system. The VTOL UAV (12) further includes a propeller disk (14) coupled to the engine and configured to provide vertical thrust in the hover mode and to provide horizontal thrust for flight during the level-flight mode.
Abstract:
An aircraft, in particular an unmanned aerial vehicle with wing-borne flight mode and hover flight mode, comprises a wing structure (4) having a left (6), middle (7), and right wing section (8). A support structure extends from the wing structure (4), and has an upper and lower support section. Each one of the left and right wing section (6, 8), and upper and lower support section (18, 20) has a thrust unit (10, 12, 22, 24). Left and right wingtip sections are rotatable relative to a left and right wing base section, respectively, around an axis extending substantially in a lengthwise direction of the wing structure. The thrust units (10,1 2) of the left and right wing sections(6, 8) are provided at the respective wingtip sections, in particular at the extremities thereof.
Abstract:
An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method of assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises an elongated wing structure having an elongated axis along the longest dimension of the elongated wing structure, the elongated wing structure having a middle location at a substantially halfway point; a connecting structure extending substantially perpendicularly from the elongated wing structure, the connecting structure being offset from the middle location of the elongated wing structure at a first position along the elongated axis; and at least three sets of propellers, wherein at least two sets of propellers are mounted on the connecting structure, and wherein at least one set of propellers is mounted at a second position offset from the middle location in an opposite direction away from the connecting structure.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
An aircraft for use in fixed wing flight mode and rotor flight mode is provided. The aircraft can include a fuselage, wings, and a plurality of engines. The fuselage can comprise a wing attachment region further comprising a rotating support. A rotating section can comprise a rotating support and the wings, with a plurality of engines attached to the rotating section. In a rotor flight mode, the rotating section can rotate around a longitudinal axis of the fuselage providing lift for the aircraft similar to the rotor of a helicopter. In a fixed wing flight mode, the rotating section does not rotate around a longitudinal axis of the fuselage, providing lift for the aircraft similar to a conventional airplane. The same engines that provide torque to power the rotor in rotor flight mode also power the aircraft in fixed wing flight mode.