Abstract:
A fiber-based display includes orthogonal arrays of fiber with co-drawn wire electrodes placed between two plates to form an information display. One of the key concepts of the invention is that all structure of each row and column of a display panel is contained within each fiber of both arrays. Therefore, the entire functionality of the display is contained within each fiber of the display. Containing the structure of the display within the fibers not only eliminates multi-level alignment process steps, but allows for the fabrication of very large flat panel displays. The fiber arrays (17 or 27) are formed by drawing fiber from a preform onto a cylindrical drum (70) and then removing them from the drum as a sheet of fibers. The fiber arrays are assembled between the plates before a seal is applied. Tight control of the fiber shape and cross-section is obtained using a lost glass or polymer process. The cross-sectional shape of the fibers in the fiber arrays are suitable for use in a flat panel display, such as plasma emissive displays, plasma addressed liquid crystal displays, field emission displays, three-dimensional and multiple view displays.
Abstract:
A method of drawing a material into sheet form includes forming a preform comprising at least one material as a large aspect ratio block wherein a first transverse dimension of the preform is much greater than a second transverse dimension substantially perpendicular to the first transverse dimension. A furnace having substantially linearly opposed heating elements one spaced from the other is provided and the heating elements are energized to apply heat to the preform to create a negative thermal gradient from an exterior surface along the first transverse dimension of the preform inward toward a central plane of the preform. The preform is drawn in such a manner that the material substantially maintains its first transverse dimension and deforms across its second transverse dimension.
Abstract:
There is provided a thermal sensing fiber (100) including a semiconducting element (102) having a fiber length and characterized by a bandgap energy corresponding to a selected operational temperature range for the fiber in which there can be produced a change in thermally-excited electronic charge carrier population in the semiconducting element in response to a temperature change in the selected temperature range. At least one pair of conducting electrodes (104,106,108,110) is provided in contact with the semiconducting element (102) along the fiber length, and an insulator is provided along the fiber length. An optical transmission element (172) can be comprised in said fiber (100) .Said fiber can be used for measuring ambient temperature as well as for self-heat-monitoring. A grid of such fibers is disclosed for monitoring surfaces or structures.
Abstract:
A drawn glass-coated metallic member has a thermal contraction coefficient differential such that the thermal contraction coefficient of the glass is less than that of the metallic member. The thermal contraction coefficient differential is maintained within a predetermined range during drawing. The glass is placed under residual compression, interfacial bonding between said glass and said wire is substantially uniform, and surface cracking and bond breaks between metal and glass are substantially prevented. A dynamic balance is maintained between the surface tension of the molten alloy and the resistance to high temperature deformation by the glass vessel in which it is contained, enabling the production of glass-coated amorphous or nanocrystalline alloy members having predefined cross-sectional shapes.
Abstract:
The invention provides techniques for drawing fibers that include conducting, semiconducting, and insulating materials in intimate contact and prescribed geometries. The resulting fiber exhibits engineered electrical and optical functionalities along extended fiber lengths. The invention provides corresponding processes for producing such fibers, including assembling a fiber preform of a plurality of distinct materials, e.g., of conducting, semiconducting, and insulating materials, and drawing the preform into a fiber.
Abstract:
Le dispositif et le procédé permettent de fabriquer en continu un fil métallique gainé de verre (10) de grande longueur. On utilise principalement un tube d'alimentation (15) contenant tout le métal nécessaire, placé lui-même dans un tube de verre (20), de manière à fournir en continu une goutte de métal fondu (14) à la base du tube de verre (20). Le chauffage par un premier inducteur (23) autour du tube de verre (20) et d'un deuxième inducteur (24) sous le tube de verre (20) permet de maintenir à température constante et de façon continue la goutte de métal en fusion (14) et d'obtenir l'étirage en continu du fil métallique gainé de verre (10).
Abstract:
A resultant device and a method for making a frame structure for use as a poled optical device (10) includes providing a glass preform (30) having a poling area (12) and a waveguiding core area (16). At least one feedstock (24) is assembled into the waveguiding core area (16). The at least one feedstock (24) is separated from the poling area (12). The glass preform (30) and the at least one feedstock (24) are heated (36) and drawn into a smaller diameter (13) to form an optical waveguide.
Abstract:
Filament in tube and stick in tube processes of forming optical fiber are described. A solid or monolithic core feedstock (110) is disposed in a hollow cladding structure (112) to form a loosely filled cladding structure. The filled cladding structure is heated to a draw temperature approximately equal to the softening temperature of the cladding structure. The feedstock (110) melts and fills the heated portion of the cladding structure forming a filled core which can then be drawn into optical fiber or to an optical can which can then be further overclad consolidated and drawn into fiber. Feedstock (110) and cladding structures (112) having widely varying coefficients of expansion may be employed. The resulting fiber can be readily designed to be fused to existing installed fibers.
Abstract:
A method of drawing different materials includes forming a first material into a preform body defining at least one channel extending therethrough having a first cross- sectional area. A first element formed of a second material is inserted into the channel and with the preform body creates a preform assembly. The first element has a cross-sectional area that is less than the cross-sectional area of the channel, and the second material has a higher melting temperature than the first material. The preform assembly is heated so that the first material softens and the preform assembly is drawn so that the preform body deforms at a first deformation rate to a smaller cross-sectional area and the first element substantially maintains a constant cross-sectional area throughout the drawing process. Upon completion of the drawing step, the cross-sectional area of the channel is equivalent to the cross-sectional area of the first element.