Abstract:
An image capture device that includes an adjustment circuit configured to monitor image parameters, generate updated image settings for the image capture device in response to the monitored image parameters, and transmit the updated image settings to one or more processors. The updated image settings configure the one or more processors to determine whether to transition the image capture device from a dynamic scene mode to a static scene mode based on a first image parameter included in the monitored image parameters, wherein the first image parameter is different from a second image parameter used to determine to transition the image capture device from the static scene mode to the dynamic scene mode, and to suspend generation of all or less than all of the updated image settings in response to determining to transition the image capture device from the dynamic scene mode to the static scene mode.
Abstract:
Focusing methods and modules are provided for metrology tools and systems. Methods comprise capturing image(s) of at least two layers of a ROI in an imaging target, binning the captured image(s), deriving a focus shift from the binned captured image(s) by comparing the layers, and calculating a focus position from the derived focus shift. Disclosed methods are direct, may be carried out in parallel to a part of the overlay measurement process and provide fast and simple focus measurements that improve metrology performance.
Abstract:
An electronic device and a method of operating the electronic device are provided. The electronic device includes an imaging device configured to obtain an image of a subject, a light source including light-emitting elements configured to emit light in different directions, and a controller configured to determine a position of the subject and a distance to the subject in the image, and control a luminance of the light-emitting elements based on the position of the subject and the distance to the subject.
Abstract:
An imaging apparatus (2) may include: an image sensor (31) having multiple pixels; a number of phase pixels which are included in the multiple pixels and which output a first signal indicating intensity of light; a first adjustment portion conducting gain adjustment on the number of phase pixels in reference to the first signal; an auto-focus portion (47) adjusting a focal point of the image in reference to a second signal output from the number of phase pixels after the gain adjustment; a phase pixel compensation portion (48) generating and outputting a compensation signal indicating intensity of light received by the number of phase pixels in reference to signals output from the multiple pixels; a second adjustment portion determining exposure and gain for taking the image in reference to signals output from the multiple pixels and applying the exposure and the gain to the multiple pixels; and an image processing portion inputting both the compensation signal and signals output from the multiple pixels to which the exposure and the gain were applied, and generating image data.
Abstract:
Described herein are methods for creating images with depth of field effects from plural image frames each having different tilt and/or focus properties. Exemplary methods comprise capturing plural image frames and adjusting the tilt axis of the camera and/or focus of the camera in between each shot. The plural image frames can then be combined to create desired depth of field effects, such as bokeh effects. One exemplary method comprises capturing a first image frame of a scene with a primary subject in focus, capturing at least a second image frame of the scene at a different tilt axis and with suitable alternative focus, and combining pixels from at least the first and second image frames based on a predetermined heuristic or algorithm to generate a resultant composite image with the desired depth of field effect (such as with a primary subject in focus and the background out of focus).
Abstract:
A method is described that includes identifying a set of features of an object, the features being tracked in an image captured by a camera. The method also includes creating a field of vectors for the reference points. The vectors indicate magnitude and direction of change in position of the reference points across more than one frame of the image. The method further includes identifying existence of out of plane movement of the object's features from same radial orientation of the vectors. The method further includes determining an amount of closer/farther movement of the object's features to/from the camera from change in distances between a plurality of the reference points. The method further includes adjusting a position of camera's lens in view of the amount of closer/farther movement of the object's features to keep the camera focused on the object.
Abstract:
Method and devices are disclosed for focusing on tilted image planes. For example, one imaging device includes an objective lens configured to focus a scene at an image plane, the scene having an object plane tilted relative to the objective lens plane and a sensor receive light from the objective lens, the sensor having a plurality of light sensing elements configured to generate image data based on the light received at the sensor. The imaging device also includes a processor and memory component configured to receive the image data, the image data indicative of a first image; receive a tilt parameter indicative of an orientation of a selected non-parallel image plane, and convert the image data to relative image data based on the tilt parameter, the relative image data indicative of a second image focused along the non-parallel image plane.
Abstract:
Methods and apparatuses are provided for obtaining an image by an electronic device. A first image for an object is obtained from a first image sensor of the electronic device. Information regarding a focusing state is determined with respect to the object based on the first image. The second image sensor of the electronic device is focused on the object based on the information regarding the focusing state. A second image for the object is obtained through the second image sensor.