Abstract:
A method of determining the orientation of a robotic machine at a worksite contemplates providing a target on the machine, moving the target to a first position on said machine, determining the location of the first position in the worksite, moving the target to a second position on said machine, and determining location of the second position in the worksite. The first and second positions are known with respect to the machine. Finally, a vector between the first and second locations defines the orientation of the machine with respect to the worksite. The target may be moved to additional positions on the machine.
Abstract:
Dozers outfitted with manual or electric valves can be retrofitted with a control system for automatically controlling the elevation and orientation of the blade. No modification of the existing hydraulic drive system or existing hydraulic control system is needed. An arm is operably coupled to the existing joystick, whose translation controls the elevation and orientation of the blade. The arm is driven by an electrical motor assembly. Measurement units mounted on the dozer body or blade provide measurements corresponding to the elevation or orientation of the blade. A computational system receives the measurements, compares them to target reference values, and generates control signals. Drivers convert the control signals to electrical drive signals. In response to the electrical drive signals, the electrical motor assembly translates the arm, which, in turn, translates the joystick. If necessary, an operator can override the automatic control system by manually operating the joystick.
Abstract:
An implement having an implement acceleration is operably coupled to a vehicle body having a body acceleration. An attitude of the implement is estimated by receiving acceleration measurements from an accelerometer mounted on the vehicle body and an accelerometer mounted on the implement. A state vector estimate is calculated based at least in part on the body acceleration measurement and the implement acceleration measurement. The state vector estimate includes a representation of the attitude of the implement relative to the vehicle body. In addition to the accelerometer measurements, angular velocity measurements can be received from a gyro mounted on the vehicle body and a gyro mounted on the implement. The state vector estimate is then calculated based at least in part on the body acceleration measurement, the implement acceleration measurement, the body angular velocity measurement, and the implement angular velocity measurement.
Abstract:
Equipment having an energy management system includes an articulated arm, a work implement, an energy management system, and a hydraulic circuit. The articulated arm includes hydraulic actuators designed to maneuver the articulated arm, and the work implement is fastened to the articulated arm. The energy management system is adjustable between a first configuration and a second configuration, and includes a hydraulic rotating machine and an electric rotating machine coupled to the hydraulic rotating machine. When the energy management system is in the first configuration, the hydraulic rotating machine and the electric rotating machine function as an electric motor powering a hydraulic pump. When the energy management system is in the second configuration, the hydraulic rotating machine and the electric rotating machine function as a hydraulic motor powering an electric generator. The hydraulic circuit is designed to supply a hydraulic fluid to drive the hydraulic actuators when the energy management system is in the first configuration, and is further designed to recover the hydraulic fluid from the hydraulic actuators and to generate electrical power when the energy management system is in the second configuration.
Abstract:
A motor grader with an adjustable wheel base is disclosed. The motor grader may include front and rear wheels supporting a chassis and a main frame. A working blade may downwardly depend from the main frame between the front wheels and rear wheels to perform work on the ground below. The motor grader may also provide an adjustable wheel base to allow the center of gravity of the motor grader to better match the work load being addressed. The adjustable wheel base may also provide more swing clearance for the blade relative to the rear wheels, allow for an adjustable articulation angle, and minimize structural loads on the motor grader, particularly during ripping operation. The wheel base may be adjustable by providing structure through which the relative positions of the rear wheels can be altered automatically, manually, and dynamically.
Abstract:
This disclosure relates to a control system for a machine implement. The control system includes a measurement sensor configured to provide an implement measurement signal indicative of a velocity of a machine implement, and a controller. The controller is configured to provide an implement measurement signal and an operator command signal, and to determine an adjusted implement command based signal based on the implement measurement signal and the operator command signal.
Abstract:
A displacement-controlled hydraulic system for installation on a multi-function machine (100), and multi-function machines (100) equipped with the hydraulic system and having devices (103) for propelling the machine (100), at least a first implement (104-108), and multiple actuators (20-28) that perform multiple functions of the machine (100). The multiple actuators (20-28) include first actuators (20-25) that control the first implement (104-108) and second actuators (26,27) that control the propelling devices (103). The hydraulic system comprises multiple pumps (14-19) for controlling the first actuators (20-25) and optionally the second actuators (26,27), and valves (29-32) that enable at least one of the pumps (14-16,19) to sequentially control two of the multiple actuators (20-25,28) and a corresponding two functions of the multiple functions performed thereby. None of the pumps (14-19) sequentially controls the second actuators (26,27) in combination with any of the first actuators (20-25).
Abstract:
A shock resistant device. A printed circuit board comprising electronics and a frequency reference is rigidly mounted to a central support member. The electronics can be mounted to both surfaces of the printed circuit board. The central support member is mounted to an enclosure via wire rope isolators. The central support member is designed to maximize rigidity at minimum mass. The central support member can comprise a thin wall metal mesh or honeycomb. At least a portion of the central support member directly contacts the printed circuit board beneath the frequency reference.