Abstract:
A method and an apparatus of a powder bed fusion additive manufacturing system that enables a quick change in the optical beam delivery size and intensity across locations of a print surface for different powdered materials while ensuring high availability of the system. A dynamic optical assembly containing a set of lens assemblies of different magnification ratios and a mechanical assembly may change the magnification ratios as needed. The dynamic optical assembly may include a transitional and rotational position control of the optics to minimize variations of the optical beam sizes across the print surface.
Abstract:
An apparatus and a method for powder bed fusion additive manufacturing involve a multiple-chamber design achieving a high efficiency and throughput. The multiple-chamber design features concurrent printing of one or more print jobs inside one or more build chambers, side removals of printed objects from build chambers allowing quick exchanges of powdered materials, and capabilities of elevated process temperature controls of build chambers and post processing heat treatments of printed objects. The multiple-chamber design also includes a height-adjustable optical assembly in combination with a fixed build platform method suitable for large and heavy printed objects.
Abstract:
A manipulator device such as a robot arm that is capable of increasing manufacturing throughput for additively manufactured parts, and allows for the manipulation of parts that would be difficult or impossible for a human to move is described. The manipulator can grasp various permanent or temporary additively manufactured manipulation points on a part to enable repositioning or maneuvering of the part.
Abstract:
An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved optical systems supporting beam combining, beam steering, and both patterned and unpatterned beam recycling and re-use are described.
Abstract:
A print engine of an additive manufacturing system includes a print station configured to hold a removable cartridge containing powder. A laser engine is positioned to direct a one or two dimensional patterned laser beam into the removable cartridge. In some embodiments powder is produced at least in part with a magnetohydrodynamic system.
Abstract:
An additive manufacturing system includes a high power laser to form a laser beam directed against a light valve. An active light valve cooling system is arranged to remove heat from the light valve and a heat exchanger is connected to the active light valve cooling system. A heat exchange fluid is circulated through the active light valve cooling system and the heat exchanger.
Abstract:
An additive manufacturing system includes a high power laser to form a high fluence laser beam at a first wavelength. The systems includes a 2D patternable light valve having a resonance based structure responsive to a write beam.
Abstract:
An additive manufacturing system includes a high power laser to form a high fluence laser beam. A 2D patternable light valve having a structure responsive to electron emission is positioned to receive and pattern light received from the high power laser.
Abstract:
An apparatus includes at least one laser source and a print bed. A light valve array having at least three optically addressable light valves is positioned to direct differing images at the print bed. Optics to direct multiple beams derived from the at least one laser source can be positioned to direct light toward and from the optically addressable light valves.
Abstract:
A solid state beam routing apparatus includes a controller and a spatial angular light valve arranged to direct a two-dimensional patterned light beam through a predetermined angle in response to an applied voltage. A bed is arranged to receive the two-dimensional patterned light beam as a succession of tiles. In some embodiments, one or more solid state galvo mechanisms are used to direct the two-dimensional patterned light beams formed by the light valve to the multiple powder bed chambers.