Abstract:
The present disclosure provides supercapacitors that may avoid the shortcomings of current energy storage technology. Provided herein are electrochemical systems, comprising three dimensional porous reduced graphene oxide film electrodes. Prototype supercapacitors disclosed herein may exhibit improved performance compared to commercial supercapacitors. Additionally, the present disclosure provides a simple, yet versatile technique for the fabrication of supercapacitors through the direct preparation of three dimensional porous reduced graphene oxide films by filtration and freeze casting.
Abstract:
본 발명은 수용액 공정이 가능한 유기-금속 착체 화합물을 이용한 전기화학 소자에 관한 것으로, 구체적으로 본 발명은, 하부 기판; 부극; 고체전해질; 정극; 상부 기판이 순차적으로 적층되고, 상기 고체전해질은 유기-금속 착체 화합물인 것을 특징으로 하는 전기화학 소자에 관한 것이다.
Abstract:
Copolymers including dioxythiophene repeating units and no acceptor units allow the formation of electrochromic polymers (ECPs) with vivid neutral state colors and very colorless oxidized states that can be switched rapidly. The dioxythiophene repeating units can included in sequences where all of one type of dioxythiophene is included exclusively as isolated dyads or triads within the copolymer, or the copolymer can be an alternating copolymer with propylenedioxythiophene units. Other non-acceptor units can be included in the copolymers. The copolymers are rendered organic solvent soluble by alkyl substituents on repeating units. The inclusion of sterically encumbered acyclic dioxythiophene (AcDOT) units promotes red color while unsubstituted ethylenedioxythiophene (EDOT) units promote blue colors, and their respective content can be manipulated to achieve a desired neutral state color. Soluble copolymers comprising at least 50 % EDOT repeating units can be used in supercapacitor applications.
Abstract:
An energy storage device housing may include a first housing shell portion having a first protrusion on an internal surface of the first housing shell portion. The energy storage device may include a second opposing housing shell portion bonded to at least a portion of the first protrusion. The energy storage device may include an energy storage device component stack having an opening shaped and/or dimensioned to facilitate contact between the first protrusion and the second housing shell portion. A method of forming an energy storage device housing may include forming a first protrusion on a first surface of a first housing shell portion, the first surface being lined with a first polymer. The method may include heating the first protrusion on the first surface of the first housing shell portion to form an opening in the first polymer adjacent to the first protrusion such that the first protrusion extends through the opening.
Abstract:
Doped activated microwave expanded graphite oxide materials and doped monolayer graphene materials, and methods of making these materials. The materials exhibit increased capacitance relative to undoped activated microwave expanded graphite oxide and monolayer graphene. The materials are suitable for use in, for example, ultracapacitors.