Abstract:
Methodologies for determining one or more staged topologies for a communication network, communication networks implementing one or more staged topologies, and systems for determining one or more staged topologies for a communication network are provided. In one embodiment, a method of determining a staged topology for a communication network including a plurality of nodes includes identifying a plurality of topologies comprising different subsets of available communication links among the nodes, associating a connection matrix with each identified topology, establishing one or more sequences of topologies using the identified topologies, multiplying the connection matrices associated with the topologies in each sequence of topologies to obtain a sequenced connection matrix corresponding with each sequence of topologies, multiplying each sequenced connection matrix by a weighting matrix to obtain a total cost matrix corresponding with each sequence of topologies, and selecting one of the sequences of topologies as the staged topology based on the total cost matrices corresponding with each sequence of topologies.
Abstract:
An electrode head (272) is disclosed that utilizes electrically conductive or dissipative fabric (278) to exchange electrical energy with tissue. This electrode head may be used for any appropriate application, such as a catheter electrode, a return electrode, or the like. Any appropriate function may be provided by this electrode head, such as tissue ablation, tissue mapping, or providing an electrical ground.
Abstract:
A system and method is provided that allows for determining the local impedance of one or more electrodes (20, 22a) of an electrode catheter (14). Such local impedance may be utilized to identify the relative position of an electrode catheter (14) to a sheath (18) of a guiding introducer. In another arrangement, local impedance of a catheter electrode can be utilized to calibrate a catheter electrode to provide improved contact sensing.
Abstract:
Generally, a DC/DC converter and its associated devices and processes are presented herein. The DC/DC converter may be a switched mode converter that includes a plurality of switching devices that couple between the first and second power supply rails. A transformer is coupled to the switching devices such that the switching devices exchange electrical energy through the transformer. A rectifier is coupled to the transformer to rectify the waveform from the transformer into a substantially DC output. The DC/DC converter also includes clamp diodes to relieve voltage stress on rectifier diodes. Resistors may be coupled in series with the clamp diodes to reduce a reset time of the DC/DC converter and thereby prevent catastrophic failure of the power supply during load transients. Additionally, the DC/DC converter may be configured with a power outage detection device that monitors gate drive signals of the converter.
Abstract translation:一般而言,在此呈现DC / DC转换器及其相关联的装置和过程。 DC / DC转换器可以是开关模式转换器,其包括耦合在第一和第二电源轨道之间的多个开关装置。 变压器耦合到开关装置,使得开关装置通过变压器交换电能。 整流器耦合到变压器以将来自变压器的波形整流为基本直流输出。 DC / DC转换器还包括钳位二极管以缓解整流二极管上的电压应力。 电阻器可以与钳位二极管串联耦合,以减少DC / DC转换器的复位时间,从而防止负载瞬变期间电源的灾难性故障。 另外,DC / DC转换器可以配置有监测转换器的门驱动信号的停电检测装置。 p>
Abstract:
Apparatuses, systems and methods are presented for handling calls. In one embodiment, an emergency call handling system capable of receiving visual information from callers and correlating the visual information to particular incidents is disclosed. To obtain visual information, a call handler may generate and send an electronic mail message to the caller. The caller may reply to the electronic mail message and attach an image captured with, for example, a camera phone. The visual information may then be correlated to the call between the caller and call handler. In addition, unsolicited visual information received by the emergency call handling system may be prioritized, triaged and delivered to the call handler. The visual information may be used to assess an emergency situation. The visual information may be forwarded to emergency service providers.
Abstract:
Apparatus and methods are provided for maintaining a desired centered relationship between a vibratory actuator of an implantable hearing aid transducer and an auditory component post-implantation. In certain embodiments, at least two guide members may extend beyond a distal end of a vibratory actuator for positioning on opposing sides of an auditory component. The guide arms may be employed to restrict post-implantation auditory component movement, and additionally or alternatively, to apply a spring-loading force against an auditory component to reposition and thereby center such auditory component in the event of post-implantation auditory component movement. In certain embodiments, a distal end may be provided on a vibratory actuator, wherein the distal end has a plurality of differently-shaped concave surfaces. A selected one of the different concave surfaces may be positioned for contact engagement with an auditory component to optimize surface engagement. In one embodiment, a contact surface may be rotatably and pivotably disposed at the distal end of a vibratory actuator to facilitate positioning of the contact surface at an optimal orientation relative to an auditory component.
Abstract:
Provided herein are hybrid-cooled electronics chassis and boards. Such boards may be plugged in a chassis and connected to a common liquid-cooling loop shared by two or more of the boards inside that chassis. Liquid cooling conduits between the electronics board/module and the chassis are engaged and disengaged with little or no manual intervention. For instance, the connections between such cooling conduits may utilize quick coupling connectors that allow for automatic or near automatic engagement and disengagement upon the engagement of the electronics board/module with the electronics chassis. In one arrangement, a chassis includes a base portion that has a fan, liquid cooling system and heat exchanger mounted thereon. An electronics module is selectively engageable with the base portion in a manner to have air displaced across the electronics module when engaged as well establish liquid flow through the electronics module when engaged.
Abstract:
A structure is disclosed for connecting an electrically-connectable metal stiffener to a ground connection within a flexible substrate, the stiffener comprising nickel-gold plated stainless steel. In one embodiment the stiffener is secured to the flexible substrate by a non-conducting adhesive which includes an opening over a ground connection, the adhesive opening being filled by a conductive epoxy. A sequence for applying the disclosed materials discloses a method for attaching the stiffening structure to the flexible substrate.
Abstract:
A portable apparatus and method for providing a cooled liquid for vascular administration are disclosed. The portable apparatus includes a source of liquid for vascular administration, a cooling reservoir for receiving liquid from the source, and a sorption-based heat exchanger for cooling liquid in the cooling reservoir by a sorption-based process. The heat exchanger may include an evaporative area for receiving and vaporizing a refrigerant, a sorptive material for sorping vaporized refrigerant, and a heat exchange member for conducting thermal energy from liquid in the cooling reservoir into the evaporative area. Additional componentry may be provided for fluidly interconnecting and controlling the flow of liquid from the source to the cooling reservoir and from the cooling reservoir to a vascular interface device. Such componentry may be conveniently packaged in a sterilized manner together with at least the cooling reservoir.
Abstract:
An electrode is provided that is adapted to both pierce a barrier and providing an over-air discharge of electrical energy. In this regard, an over air discharge of electrical energy may be provided to an opposing side of a barrier. In one arrangement, the electrode includes a tapered point, which may be a hardened material, to facilitate piercing a barrier. In a further arrangement, the electrode incorporates an insulative shaft. In this arrangement, the insulative shaft electrically isolates a conductor of the electrode from a conductive barrier. Accordingly, the electrode may be utilized to pierce metallic enclosures and provide an electrical discharge for the purpose of altering the operation of electronic device within such enclosures.