摘要:
[A high-speed low-power latch includes three sets of transistors. A first set of transistors selects a tracking mode or a holding mode for the latch based on a clock signal having non-rail-to-rail or rail-to-rail voltage swing. A second set of transistors captures a data value based on an input signal and provides an output signal during the tracking mode. A third set of transistors stores the data value and provides the output signal during the holding mode. The input and output signals have rail-to-rail voltage swing. In another aspect, a signal generator includes at least one latch and a control circuit. The latch(es) receive a clock signal and generate an output signal. The control circuit senses a duty cycle of a feedback signal derived from the output signal and generates a control signal to adjust operation of the latch(es) to obtain 50% duty cycle for the feedback signal.
摘要:
A method is disclosed that includes propagating data via a first data path of a sequential circuit element in response to a clock signal received at a single clocked transistor of the sequential circuit element. The method also includes retaining information related to the data propagated via the first path at a retention circuit element of a second data path, where the first data path includes a first transistor that is responsive to an output of the single clocked transistor. The first transistor has a higher current flow capacity than a second transistor associated with the second data path.
摘要:
A level shifting circuit (105) having a signal input that operates in a first voltage domain (LV DD ) and a signal output that operates in a second voltage domain (HV DD ). In some embodiments, the level shifting circuit includes a clocked level shifter. In some embodiments, the level shifting circuit includes a level shifting latch (208) that latches a translated output signal. In one example, the level shifting latch includes a latch portion and a stack of transistors (211, 213, 215, 217) with a transistor having a control electrode coupled to a clock input.
摘要:
A method is disclosed for generating pulse width modulated pulse control signals for controlling switches in a switching power supply. First, a count value is determined of a master clock (5618) within a switching cycle of the power supply from beginning to end thereof. A separate state machine (3704) is provided for each edge in each of pulse control signals and each is operated to generate the associated edge as a function of the sum (5612) of a fixed reference count value from the beginning of the switching cycle and a determined count value when the sum is determined (5620) to equal the actual count value.
摘要:
An integrated circuit including a Multi-Threshold CMOS (MTCMOS) latch combining low voltage threshold CMOS circuits with high voltage threshold CMOS circuits. The low voltage threshold circuits including a majority of the circuits in the signal path of the latch to ensure high performance of the latch. The latch further including high voltage circuits to eliminate leakage paths from the low voltage threshold circuits when the latch is in a sleep mode. A single-phase latch and a two-phase latch are provided. Each of the latches is implemented with master and slave registers. Data is held in either the master register or the slave register depending on the phase or phases of the clock signals. A multiplexer may alternatively be implemented prior to the master latch for controlling an input signal path during sleep and active modes of the latch and for providing a second input signal path for test.
摘要:
A method and apparatus for storing data in a master flip flop, comprising in combination receiving a clock signal having a first and second state, storing a master data state in a master storage device having a master storage input and a master storage output, storing a master complement data state in a master complement storage device having a master complement storage input and a master storage complement output, receiving a data input signal by a transmission gate, receiving a complement data input signal by a complement transmission gate, overriding the master storage complement output with the data input signal when the clock is in the first state, overriding the master storage output with the complement data input signal when the clock is in the first state, disconnecting the master storage complement output from the data input signal when the clock is in the second state, and disconnecting the master storage output from the complement data input signal when the clock is in the second state. The set-up time for the transmission gate is less than two transistor gate delays.